125 research outputs found

    A two phase age dependent and two-mutation stochastic model of carcinogenesis

    Get PDF
    An age dependent and two-mutation stochastic model of carcinogenesis is formulated and studied. In this model, we introduce a fitness age T, (a positive constant) for each cell to divide into two cells. A normal cell if its age is not greater than T either divides into two normal cells or divides into one normal cell and one intermediate cell or dies. A normal cell if its age is greater than T either divides into one normal cell and one intermediate cell, or divides into two intermediate cells or dies. An intermediate cell if its age is not greater than T divides into two intermediate cells or divides into one intermediate cell and one malignant cell or dies. An intermediate cell if its age is greater than T divides into one intermediate cell and one malignant cell or divides into two malignant cells or dies. It is assumed that, once a malignant cell is produced, it generates a malignant tumor with probability 1. We obtain the mean numbers of normal, intermediate and malignant cells. It is shown that the production of malignant cells in one-mutation model is faster than that in two-mutation model. A numerical illustration is presented to highlight the performance of the model

    On QBF Proofs and Preprocessing

    Full text link
    QBFs (quantified boolean formulas), which are a superset of propositional formulas, provide a canonical representation for PSPACE problems. To overcome the inherent complexity of QBF, significant effort has been invested in developing QBF solvers as well as the underlying proof systems. At the same time, formula preprocessing is crucial for the application of QBF solvers. This paper focuses on a missing link in currently-available technology: How to obtain a certificate (e.g. proof) for a formula that had been preprocessed before it was given to a solver? The paper targets a suite of commonly-used preprocessing techniques and shows how to reconstruct certificates for them. On the negative side, the paper discusses certain limitations of the currently-used proof systems in the light of preprocessing. The presented techniques were implemented and evaluated in the state-of-the-art QBF preprocessor bloqqer.Comment: LPAR 201

    The Escherichia coli transcriptome mostly consists of independently regulated modules

    Get PDF
    Underlying cellular responses is a transcriptional regulatory network (TRN) that modulates gene expression. A useful description of the TRN would decompose the transcriptome into targeted effects of individual transcriptional regulators. Here, we apply unsupervised machine learning to a diverse compendium of over 250 high-quality Escherichia coli RNA-seq datasets to identify 92 statistically independent signals that modulate the expression of specific gene sets. We show that 61 of these transcriptomic signals represent the effects of currently characterized transcriptional regulators. Condition-specific activation of signals is validated by exposure of E. coli to new environmental conditions. The resulting decomposition of the transcriptome provides: a mechanistic, systems-level, network-based explanation of responses to environmental and genetic perturbations; a guide to gene and regulator function discovery; and a basis for characterizing transcriptomic differences in multiple strains. Taken together, our results show that signal summation describes the composition of a model prokaryotic transcriptome

    RpoS Regulates a Novel Type of Plasmid DNA Transfer in Escherichia coli

    Get PDF
    Spontaneous plasmid transformation of Escherichia coli is independent of the DNA uptake machinery for single-stranded DNA (ssDNA) entry. The one-hit kinetic pattern of plasmid transformation indicates that double-stranded DNA (dsDNA) enters E. coli cells on agar plates. However, DNA uptake and transformation regulation remain unclear in this new type of plasmid transformation. In this study, we developed our previous plasmid transformation system and induced competence at early stationary phase. Despite of inoculum size, the development of competence was determined by optical cell density. DNase I interruption experiment showed that DNA was taken up exponentially within the initial 2 minutes and most transforming DNA entered E. coli cells within 10 minutes on LB-agar plates. A half-order kinetics between recipient cells and transformants was identified when cell density was high on plates. To determine whether the stationary phase master regulator RpoS plays roles in plasmid transformation, we investigated the effects of inactivating and over-expressing its encoding gene rpoS on plasmid transformation. The inactivation of rpoS systematically reduced transformation frequency, while over-expressing rpoS increased plasmid transformation. Normally, RpoS recognizes promoters by its lysine 173 (K173). We found that the K173E mutation caused RpoS unable to promote plasmid transformation, further confirming a role of RpoS in regulating plasmid transformation. In classical transformation, DNA was transferred across membranes by DNA uptake proteins and integrated by DNA processing proteins. At stationary growth phase, RpoS regulates some genes encoding membrane/periplasmic proteins and DNA processing proteins. We quantified transcription of 22 of them and found that transcription of only 4 genes (osmC, yqjC, ygiW and ugpC) encoding membrane/periplasmic proteins showed significant differential expression when wildtype RpoS and RpoSK173E mutant were expressed. Further investigation showed that inactivation of any one of these genes did not significantly reduce transformation, suggesting that RpoS may regulate plasmid transformation through other/multiple target genes

    Differential Effects of Pravastatin and Simvastatin on the Growth of Tumor Cells from Different Organ Sites

    Get PDF
    3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) inhibitors, commonly known as statins, may possess cancer preventive and therapeutic properties. Statins are effective suppressors of cholesterol synthesis with a well-established risk-benefit ratio in cardiovascular disease prevention. Mechanistically, targeting HMGCR activity primarily influences cholesterol biosynthesis and prenylation of signaling proteins. Pravastatin is a hydrophilic statin that is selectively taken up by a sodium-independent organic anion transporter protein-1B1 (OATP1B1) exclusively expressed in liver. Simvastatin is a hydrophobic statin that enters cells by other mechanisms. Poorly-differentiated and well-differentiated cancer cell lines were selected from various tissues and examined for their response to these two statins. Simvastatin inhibited the growth of most tumor cell lines more effectively than pravastatin in a dose dependent manner. Poorly-differentiated cancer cells were generally more responsive to simvastatin than well-differentiated cancer cells, and the levels of HMGCR expression did not consistently correlate with response to statin treatment. Pravastatin had a significant effect on normal hepatocytes due to facilitated uptake and a lesser effect on prostate PC3 and colon Caco-2 cancer cells since the OATP1B1 mRNA and protein were only found in the normal liver and hepatocytes. The inhibition of cell growth was accompanied by distinct alterations in mitochondrial networks and dramatic changes in cellular morphology related to cofilin regulation and loss of p-caveolin. Both statins, hydrophilic pravastatin and hypdrophobic simvastatin caused redistribution of OATP1B1 and HMGCR to perinuclear sites. In conclusion, the specific chemical properties of different classes of statins dictate mechanistic properties which may be relevant when evaluating biological responses to statins

    Attending to warning signs of primary immunodeficiencies disease across the range of clinical practices

    Get PDF
    Purpose: Patients with primary immunodeficiency diseases (PIDD) may present with recurrent infections affecting different organs, organ-specific inflammation/autoimmunity, and also increased cancer risk, particularly hematopoietic malignancies. The diversity of PIDD and the wide age range over which these clinical occurrences become apparent often make the identification of patients difficult for physicians other than immunologists. The aim of this report is to develop a tool for educative programs targeted to specialists and applied by clinical immunologists. Methods: Considering the data from national surveys and clinical reports of experiences with specific PIDD patients, an evidence-based list of symptoms, signs, and corresponding laboratory tests were elaborated to help physicians other than immunologists look for PIDD. Results: Tables including main clinical manifestations, restricted immunological evaluation, and possible related diagnosis were organized for general practitioners and 5 specialties. Tables include information on specific warning signs of PIDD for pulmonologists, gastroenterologists, dermatologists, hematologists, and infectious disease specialists. Conclusions: This report provides clinical immunologists with an instrument they can use to introduce specialists in other areas of medicine to the warning signs of PIDD and increase early diagnosis. Educational programs should be developed attending the needs of each specialty.Fil: Costa Carvalho, Beatriz Tavares. Universidade Federal de São Paulo; BrasilFil: Sevciovic Grumach, Anete. Fundação ABC. Faculdade de Medicina; BrasilFil: Franco, José Luis. Universidad de Antioquia; ColombiaFil: Espinosa Rosales, Francisco Javier. Instituto Nacional de Pediatría. Unidad de Investigación en Inmunodeficiencias; MéxicoFil: Leiva, Lily E.. State University of Louisiana; Estados UnidosFil: King, Alejandra. Hospital de Niños Doctor Luis Calvo Mackenna. Unidad de Inmunología; ChileFil: Porras, Oscar. Hospital Nacional de Niños “Dr. Carlos Sáenz Herrera”; Costa RicaFil: Bezrodnik, Liliana. Gobierno de la Ciudad de Buenos Aires. Hospital General de Niños "Ricardo Gutiérrez"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Oleastro, Mathias. Gobierno de la Ciudad de Buenos Aires. Hospital de Pediatría "Juan P. Garrahan"; ArgentinaFil: Sorensen, Ricardo U.. State University of Louisiana; Estados Unidos. Universidad de La Frontera. Facultad de Medicina; MéxicoFil: Condino Neto, Antonio. Universidade de Sao Paulo; Brasi

    Designing a broad-spectrum integrative approach for cancer prevention and treatment

    Get PDF
    Targeted therapies and the consequent adoption of "personalized" oncology have achieved notablesuccesses in some cancers; however, significant problems remain with this approach. Many targetedtherapies are highly toxic, costs are extremely high, and most patients experience relapse after a fewdisease-free months. Relapses arise from genetic heterogeneity in tumors, which harbor therapy-resistantimmortalized cells that have adopted alternate and compensatory pathways (i.e., pathways that are notreliant upon the same mechanisms as those which have been targeted). To address these limitations, aninternational task force of 180 scientists was assembled to explore the concept of a low-toxicity "broad-spectrum" therapeutic approach that could simultaneously target many key pathways and mechanisms. Using cancer hallmark phenotypes and the tumor microenvironment to account for the various aspectsof relevant cancer biology, interdisciplinary teams reviewed each hallmark area and nominated a widerange of high-priority targets (74 in total) that could be modified to improve patient outcomes. For thesetargets, corresponding low-toxicity therapeutic approaches were then suggested, many of which werephytochemicals. Proposed actions on each target and all of the approaches were further reviewed forknown effects on other hallmark areas and the tumor microenvironment. Potential contrary or procar-cinogenic effects were found for 3.9% of the relationships between targets and hallmarks, and mixedevidence of complementary and contrary relationships was found for 7.1%. Approximately 67% of therelationships revealed potentially complementary effects, and the remainder had no known relationship. Among the approaches, 1.1% had contrary, 2.8% had mixed and 62.1% had complementary relationships. These results suggest that a broad-spectrum approach should be feasible from a safety standpoint. Thisnovel approach has potential to be relatively inexpensive, it should help us address stages and types ofcancer that lack conventional treatment, and it may reduce relapse risks. A proposed agenda for futureresearch is offered

    Antagonizing retinoic acid receptors increases myeloid cell production by cultured human hematopoietic stem cells

    Get PDF
    Activities of the retinoic acid receptor (RAR)α and RARγ are important to hematopoiesis. Here, we have investigated the effects of receptor selective agonists and antagonists on the primitive human hematopoietic cell lines KG1 and NB-4 and purified normal human hematopoietic stem cells (HSCs). Agonizing RARα (by AGN195183) was effective in driving neutrophil differentiation of NB-4 cells and this agonist synergized with a low amount (10 nM) of 1α,25-dihydroxyvitamin D(3) to drive monocyte differentiation of NB-4 and KG1 cells. Treatment of cultures of human HSCs (supplemented with stem cell factor ± interleukin 3) with an antagonist of all RARs (AGN194310) or of RARα (AGN196996) prolonged the lifespan of cultures, up to 55 days, and increased the production of neutrophils and monocytes. Slowing down of cell differentiation was not observed, and instead, hematopoietic stem and progenitor cells had expanded in number. Antagonism of RARγ (by AGN205728) did not affect cultures of HSCs. Studies of CV-1 and LNCaP cells transfected with RAR expression vectors and a reporter vector revealed that RARγ and RARβ are activated by sub-nM all-trans retinoic acid (EC(50)–0.3 nM): ~50-fold more is required for activation of RARα (EC(50)–16 nM). These findings further support the notion that the balance of expression and activity of RARα and RARγ are important to hematopoietic stem and progenitor cell expansion and differentiation
    corecore