246 research outputs found
Geospatial information infrastructures
Manual of Digital Earth / Editors: Huadong Guo, Michael F. Goodchild, Alessandro Annoni .- Springer, 2020 .- ISBN: 978-981-32-9915-3Geospatial information infrastructures (GIIs) provide the technological, semantic,organizationalandlegalstructurethatallowforthediscovery,sharing,and use of geospatial information (GI). In this chapter, we introduce the overall concept and surrounding notions such as geographic information systems (GIS) and spatial datainfrastructures(SDI).WeoutlinethehistoryofGIIsintermsoftheorganizational andtechnologicaldevelopmentsaswellasthecurrentstate-of-art,andreflectonsome of the central challenges and possible future trajectories. We focus on the tension betweenincreasedneedsforstandardizationandtheever-acceleratingtechnological changes. We conclude that GIIs evolved as a strong underpinning contribution to implementation of the Digital Earth vision. In the future, these infrastructures are challengedtobecomeflexibleandrobustenoughtoabsorbandembracetechnological transformationsandtheaccompanyingsocietalandorganizationalimplications.With this contribution, we present the reader a comprehensive overview of the field and a solid basis for reflections about future developments
If you build it, they still may not come: outcomes and process of implementing a community-based integrated knowledge translation mapping innovation
<p>Abstract</p> <p>Background</p> <p>Maps and mapping tools through geographic information systems (GIS) are highly valuable for turning data into useful information that can help inform decision-making and knowledge translation (KT) activities. However, there are several challenges involved in incorporating GIS applications into the decision-making process. We highlight the challenges and opportunities encountered in implementing a mapping innovation as a KT strategy within the non-profit (public) health sector, reflecting on the processes and outcomes related to our KT innovations.</p> <p>Methods</p> <p>A case study design, whereby the case is defined as the data analyst and manager dyad (a two-person team) in selected Ontario Early Year Centres (OEYCs), was used. Working with these paired individuals, we provided a series of interventions followed by one-on-one visits to ensure that our interventions were individually tailored to personal and local decision-making needs. Data analysis was conducted through a variety of qualitative assessments, including field notes, interview data, and maps created by participants. Data collection and data analysis have been guided by the Ottawa Model of Research Use (OMRU) conceptual framework.</p> <p>Results</p> <p>Despite our efforts to remove all barriers associated with our KT innovation (maps), our results demonstrate that both individual level and systemic barriers pose significant challenges for participants. While we cannot claim a causal association between our project and increased mapping by participants, participants did report a moderate increase in the use of maps in their organization. Specifically, maps were being used in decision-making forums as a way to allocate resources, confirm tacit knowledge about community needs, make financially-sensitive decisions more transparent, evaluate programs, and work with community partners.</p> <p>Conclusions</p> <p>This project highlights the role that maps can play and the importance of communicating the importance of maps as a decision support tool. Further, it represents an integrated knowledge project in the community setting, calling to question the applicability of traditional KT approaches when community values, minimal resources, and partners play a large role in decision making. The study also takes a unique perspective--where research producers and users work as dyad-pairs in the same organization--that has been under-explored to date in KT studies.</p
Beyond the biosynthetic gene cluster paradigm: Genome-wide coexpression networks connect clustered and unclustered transcription factors to secondary metabolic pathways
Fungal secondary metabolites are widely used as therapeutics and are vital components of drug discovery programs. A major challenge hindering discovery of novel secondary metabolites is that the underlying pathways involved in their biosynthesis are transcriptionally silent under typical laboratory growth conditions, making it difficult to identify the transcriptional networks that they are embedded in. Furthermore, while the genes participating in secondary metabolic pathways are typically found in contiguous clusters on the genome, known as biosynthetic gene clusters (BGCs), this is not always the case, especially for global and pathway-specific regulators of pathways’ activities. To address these challenges, we used 283 genome-wide gene expression data sets of the ascomycete cell factory Aspergillus niger generated during growth under 155 different conditions to construct two gene coexpression networks based on Spearman’s correlation coefficients (SCCs) and on mutual rank-transformed Pearson’s correlation coefficients (MR-PCCs). By mining these networks, we predicted six transcription factors, named MjkA to MjkF, to regulate secondary metabolism in A. niger. Overexpression of each transcription factor using the Tet-On cassette modulated the production of multiple secondary metabolites. We found that the SCC and MR-PCC approaches complemented each other, enabling the delineation of putative global (SCC) and pathway-specific (MR-PCC) transcription factors. These results highlight the potential of coexpression network approaches to identify and activate fungal secondary metabolic pathways and their products. More broadly, we argue that drug discovery programs in fungi should move beyond the BGC paradigm and focus on understanding the global regulatory networks in which secondary metabolic pathways are embedded.DFG, 404295023, Etablierung eines innovativen Ko-Kultivierungssystems zur Hochdurchsatzidentifizierung von antimikrobiellen WirkstoffenEC/FP7/607332/EU/Quantitative Biology for Fungal Secondary Metabolite Producers/QUANTFUN
Adsorption of CO on a Platinum (111) surface - a study within a four-component relativistic density functional approach
We report on results of a theoretical study of the adsorption process of a
single carbon oxide molecule on a Platinum (111) surface. A four-component
relativistic density functional method was applied to account for a proper
description of the strong relativistic effects. A limited number of atoms in
the framework of a cluster approach is used to describe the surface. Different
adsorption sites are investigated. We found that CO is preferably adsorbed at
the top position.Comment: 23 Pages with 4 figure
IS911 transpososome assembly as analysed by tethered particle motion
Initiation of transposition requires formation of a synaptic complex between both transposon ends and the transposase (Tpase), the enzyme which catalyses DNA cleavage and strand transfer and which ensures transposon mobility. We have used a single-molecule approach, tethered particle motion (TPM), to observe binding of a Tpase derivative, OrfAB[149], amputated for its C-terminal catalytic domain, to DNA molecules carrying one or two IS911 ends. Binding of OrfAB[149] to a single IS911 end provoked a small shortening of the DNA. This is consistent with a DNA bend introduced by protein binding to a single end. This was confirmed using a classic gel retardation assay with circularly permuted DNA substrates. When two ends were present on the tethered DNA in their natural, inverted, configuration, Tpase not only provoked the short reduction in length but also generated species with greatly reduce effective length consistent with DNA looping between the ends. Once formed, this ‘looped’ species was very stable. Kinetic analysis in real-time suggested that passage from the bound unlooped to the looped state could involve another species of intermediate length in which both transposon ends are bound. DNA carrying directly repeated ends also gave rise to the looped species but the level of the intermediate species was significantly enhanced. Its accumulation could reflect a less favourable synapse formation from this configuration than for the inverted ends. This is compatible with a model in which Tpase binds separately to and bends each end (the intermediate species) and protein–protein interactions then lead to synapsis (the looped species)
Revisiting the B-cell compartment in mouse and humans: more than one B-cell subset exists in the marginal zone and beyond.
International audienceABSTRACT: The immunological roles of B-cells are being revealed as increasingly complex by functions that are largely beyond their commitment to differentiate into plasma cells and produce antibodies, the key molecular protagonists of innate immunity, and also by their compartmentalisation, a more recently acknowledged property of this immune cell category. For decades, B-cells have been recognised by their expression of an immunoglobulin that serves the function of an antigen receptor, which mediates intracellular signalling assisted by companion molecules. As such, B-cells were considered simple in their functioning compared to the other major type of immune cell, the T-lymphocytes, which comprise conventional T-lymphocyte subsets with seminal roles in homeostasis and pathology, and non-conventional T-lymphocyte subsets for which increasing knowledge is accumulating. Since the discovery that the B-cell family included two distinct categories - the non-conventional, or extrafollicular, B1 cells, that have mainly been characterised in the mouse; and the conventional, or lymph node type, B2 cells - plus the detailed description of the main B-cell regulator, FcγRIIb, and the function of CD40+ antigen presenting cells as committed/memory B-cells, progress in B-cell physiology has been slower than in other areas of immunology. Cellular and molecular tools have enabled the revival of innate immunity by allowing almost all aspects of cellular immunology to be re-visited. As such, B-cells were found to express "Pathogen Recognition Receptors" such as TLRs, and use them in concert with B-cell signalling during innate and adaptive immunity. An era of B-cell phenotypic and functional analysis thus began that encompassed the study of B-cell microanatomy principally in the lymph nodes, spleen and mucosae. The novel discovery of the differential localisation of B-cells with distinct phenotypes and functions revealed the compartmentalisation of B-cells. This review thus aims to describe novel findings regarding the B-cell compartments found in the mouse as a model organism, and in human physiology and pathology. It must be emphasised that some differences are noticeable between the mouse and human systems, thus increasing the complexity of B-cell compartmentalisation. Special attention will be given to the (lymph node and spleen) marginal zones, which represent major crossroads for B-cell types and functions and a challenge for understanding better the role of B-cell specificities in innate and adaptive immunology
Uptake Mechanism of ApoE-Modified Nanoparticles on Brain Capillary Endothelial Cells as a Blood-Brain Barrier Model
Background: The blood-brain barrier (BBB) represents an insurmountable obstacle for most drugs thus obstructing an effective treatment of many brain diseases. One solution for overcoming this barrier is a transport by binding of these drugs to surface-modified nanoparticles. Especially apolipoprotein E (ApoE) appears to play a major role in the nanoparticle-mediated drug transport across the BBB. However, at present the underlying mechanism is incompletely understood.
Methodology/Principal Findings: In this study, the uptake of the ApoE-modified nanoparticles into the brain capillary endothelial cells was investigated to differentiate between active and passive uptake mechanism by flow cytometry and confocal laser scanning microscopy. Furthermore, different in vitro co-incubation experiments were performed with competing ligands of the respective receptor.
Conclusions/Significance: This study confirms an active endocytotic uptake mechanism and shows the involvement of low density lipoprotein receptor family members, notably the low density lipoprotein receptor related protein, on the uptake of the ApoE-modified nanoparticles into the brain capillary endothelial cells. This knowledge of the uptake mechanism of ApoE-modified nanoparticles enables future developments to rationally create very specific and effective carriers to overcome the blood-brain barrier
Breast Cancer Stem-Like Cells Are Inhibited by a Non-Toxic Aryl Hydrocarbon Receptor Agonist
Cancer stem cells (CSCs) have increased resistance to cancer chemotherapy. They can be enriched as drug-surviving CSCs (D-CSCs) by growth with chemotherapeutic drugs, and/or by sorting of cells expressing CSC markers such as aldehyde dehydrogenase-1 (ALDH). CSCs form colonies in agar, mammospheres in low-adherence cultures, and tumors following xenotransplantation in Scid mice. We hypothesized that tranilast, a non-toxic orally active drug with anti-cancer activities, would inhibit breast CSCs.We examined breast cancer cell lines or D-CSCs generated by growth of these cells with mitoxantrone. Tranilast inhibited colony formation, mammosphere formation and stem cell marker expression. Mitoxantrone-selected cells were enriched for CSCs expressing stem cell markers ALDH, c-kit, Oct-4, and ABCG2, and efficient at forming mammospheres. Tranilast markedly inhibited mammosphere formation by D-CSCs and dissociated formed mammospheres, at pharmacologically relevant concentrations. It was effective against D-CSCs of both HER-2+ and triple-negative cell lines. Tranilast was also effective in vivo, since it prevented lung metastasis in mice injected i.v. with triple-negative (MDA-MB-231) mitoxantrone-selected cells. The molecular targets of tranilast in cancer have been unknown, but here we demonstrate it is an aryl hydrocarbon receptor (AHR) agonist and this plays a key role. AHR is a transcription factor activated by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), polycyclic aromatic hydrocarbons and other ligands. Tranilast induced translocation of the AHR to the nucleus and stimulated CYP1A1 expression (a marker of AHR activation). It inhibited binding of the AHR to CDK4, which has been linked to cell-cycle arrest. D-CSCs expressed higher levels of the AHR than other cells. Knockdown of the AHR with siRNA, or blockade with an AHR antagonist, entirely abrogated the anti-proliferative and anti-mammosphere activity of tranilast. Thus, the anti-cancer effects of tranilast are AHR dependent.We show that tranilast is an AHR agonist with inhibitory effects on breast CSCs. It is effective against CSCs of triple-negative breast cancer cells selected for anti-cancer drug resistance. These results suggest it might find applications in the treatment of breast cancer
- …