161 research outputs found

    Structures and processes necessary for providing effective home treatment to severely mentally ill persons: a naturalistic study

    Get PDF
    Background: Home treatment for severely mentally ill persons is becoming increasingly popular. This research aims to identify structures and processes in home treatment that impact on patient-related outcomes. Methods: We analysed 17 networks that provide home treatment to severely mentally ill persons using a naturalistic approach. The networks were similar with regard to central components of home treatment such as case management, 24 h crisis hotline and home visits, but differed in all other aspects such as the multidisciplinary teams, time spent with patients, etc. To determine treatment outcome, patients’ psychosocial functioning was measured using the Health of the Nation Outcome Scales (HoNOS). Structures and processes were assessed using claims data and questionnaires answered by the different networks. Primary outcome was highlighted by the change in HoNOS scores from the start of home treatment compared with 6 months later. We sought to explain this outcome through patient and network characteristics using regression analysis. Data on 3,567 patients was available. Results: On average, psychosocial functioning improved by 0.84 across networks between t0 and t1. There were more similarities than differences between the networks with regard to the structures and processes that we tested. A univariate regression analysis found staff’s prior experience in mental health care and the effort that they invested in their work correlated positively with patient outcome. This needs to be interpreted under considering that univariate analysis does not show causal relationship. A high case load per case manager, increased and longer patient contact and more family intervention were correlated with worse patient outcome, probably indicating that sicker patients receive more care and intervention. Conclusion: Home treatment networks succeed in delivering care tailored to the needs of patients. In order to improve the quality of care in home treatment, this study suggests employing experienced staff who is ready to invest more effort in their patients. Further research needs to consider a longer follow-up time

    Artificial pancreas systems for people with type 2 diabetes: Conception and design of the european CLOSE project

    Get PDF
    In the last 10 years tremendous progress has been made in the development of artificial pancreas (AP) systems for people with type 1 diabetes (T1D). The pan-European consortium CLOSE (Automated Glucose Control at Home for People with Chronic Disease) is aiming to develop integrated AP solutions (APplus) tailored to the needs of people with type 2 diabetes (T2D). APplus comprises a product and service package complementing the AP system by obligatory training as well as home visits and telemedical consultations on demand. Outcome predictors and performance indicators shall help to identify people who could benefit most from AP usage and facilitate the measurement of AP impact in diabetes care. In a first step CLOSE will establish a scalable APplus model case working at the interface between patients, homecare service providers, and payers in France. CLOSE will then scale up APplus by pursuing geographic distribution, targeting additional audiences, and enhancing AP functionalities and interconnectedness. By being part of the European Institute of Innovation and Technology (EIT) Health public-private partnership, CLOSE is committed to the EIT “knowledge triangle” pursuing the integrated advancement of technology, education, and business creation. Putting stakeholders, education, and impact into the center of APplus advancement is considered key for achieving wide AP use in T2D care

    The clinical features of the piriformis syndrome: a systematic review

    Get PDF
    Piriformis syndrome, sciatica caused by compression of the sciatic nerve by the piriformis muscle, has been described for over 70 years; yet, it remains controversial. The literature consists mainly of case series and narrative reviews. The objectives of the study were: first, to make the best use of existing evidence to estimate the frequencies of clinical features in patients reported to have PS; second, to identify future research questions. A systematic review was conducted of any study type that reported extractable data relevant to diagnosis. The search included all studies up to 1 March 2008 in four databases: AMED, CINAHL, Embase and Medline. Screening, data extraction and analysis were all performed independently by two reviewers. A total of 55 studies were included: 51 individual and 3 aggregated data studies, and 1 combined study. The most common features found were: buttock pain, external tenderness over the greater sciatic notch, aggravation of the pain through sitting and augmentation of the pain with manoeuvres that increase piriformis muscle tension. Future research could start with comparing the frequencies of these features in sciatica patients with and without disc herniation or spinal stenosis

    The effect of renal denervation on T cells in patients with resistant hypertension

    Get PDF
    (1) BACKGROUND: Sympathetic overactivity is a major contributor to resistant hypertension (RH). According to animal studies, sympathetic overactivity increases immune responses, thereby aggravating hypertension and cardiovascular outcomes. Renal denervation (RDN) reduces sympathetic nerve activity in RH. Here, we investigate the effect of RDN on T-cell signatures in RH. (2) METHODS: Systemic inflammation and T-cell subsets were analyzed in 17 healthy individuals and 30 patients with RH at baseline and 6 months after RDN. (3) RESULTS: The patients with RH demonstrated higher levels of pro-inflammatory cytokines and higher frequencies of CD4+ effector memory (TEM), CD4+ effector memory residential (TEMRA) and CD8+ central memory (TCM) cells than the controls. After RDN, systolic automated office blood pressure (BP) decreased by -17.6 ± 18.9 mmHg. Greater BP reductions were associated with higher CD4+ TEM (r -0.421, p = 0.02) and CD8+ TCM (r -0.424, p = 0.02) frequencies at baseline. The RDN responders, that is, the patients with ≥10mmHg systolic BP reduction, showed reduced pro-inflammatory cytokine levels, whereas the non-responders had unchanged inflammatory activity and higher CD8+ TEMRA frequencies with increased cellular cytokine production. (4) CONCLUSIONS: The pro-inflammatory state of patients with RH is characterized by altered T-cell signatures, especially in non-responders. A detailed analysis of T cells might be useful in selecting patients for RDN

    Recent visible light and metal free strategies in [2+2] and [4+2] photocycloadditions

    Full text link
    When aiming to synthesize molecules with elevated molecular complexity starting from relatively simple starting materials, photochemical transformations represent an open avenue to circumvent analogous multistep procedures. Specifically, light-mediated cycloadditions remain as powerful tools to generate new bonds begotten from non-very intuitive disconnections, that alternative thermal protocols would not offer. In response to the current trend in both industrial and academic research pointing towards green and sustainable processes, several strategies that meet these requirements are currently available in the literature. This Minireview summarizes [2+2] and [4+2] photocycloadditions that do not require the use of metal photocatalysts by means of alternative strategies. It is segmented according to the cycloaddition type in order to give the reader a friendly approach and we primarily focus on the most recent developments in the field carried out using visible light, a general overview of the mechanism in each case is offered as wellFinancial support was provided by the European Research Council (ERC-CoG, Contract Number: 647550), the Spanish Government (RTI2018-095038-B-I00), the ‘Comunidad de Madrid’ and European Structural Funds (S2018/NMT-4367). R. I. R thanks Fundación Carolina for a graduate fellowshi

    Involvement of PPAR-γ in the neuroprotective and anti-inflammatory effects of angiotensin type 1 receptor inhibition: effects of the receptor antagonist telmisartan and receptor deletion in a mouse MPTP model of Parkinson's disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several recent studies have shown that angiotensin type 1 receptor (AT1) antagonists such as candesartan inhibit the microglial inflammatory response and dopaminergic cell loss in animal models of Parkinson's disease. However, the mechanisms involved in the neuroprotective and anti-inflammatory effects of AT1 blockers in the brain have not been clarified. A number of studies have reported that AT1 blockers activate peroxisome proliferator-activated receptor gamma (PPAR γ). PPAR-γ activation inhibits inflammation, and may be responsible for neuroprotective effects, independently of AT1 blocking actions.</p> <p>Methods</p> <p>We have investigated whether oral treatment with telmisartan (the most potent PPAR-γ activator among AT1 blockers) provides neuroprotection against dopaminergic cell death and neuroinflammation, and the possible role of PPAR-γ activation in any such neuroprotection. We used a mouse model of parkinsonism induced by the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and co-administration of the PPAR-γ antagonist GW9662 to study the role of PPAR-γ activation. In addition, we used AT1a-null mice lesioned with MPTP to study whether deletion of AT1 in the absence of any pharmacological effect of AT1 blockers provides neuroprotection, and investigated whether PPAR-γ activation may also be involved in any such effect of AT1 deletion by co-administration of the PPAR-γ antagonist GW9662.</p> <p>Results</p> <p>We observed that telmisartan protects mouse dopaminergic neurons and inhibits the microglial response induced by administration of MPTP. The protective effects of telmisartan on dopaminergic cell death and microglial activation were inhibited by co-administration of GW9662. Dopaminergic cell death and microglial activation were significantly lower in AT1a-null mice treated with MPTP than in mice not subjected to AT1a deletion. Interestingly, the protective effects of AT1 deletion were also inhibited by co-administration of GW9662.</p> <p>Conclusion</p> <p>The results suggest that telmisartan provides effective neuroprotection against dopaminergic cell death and that the neuroprotective effect is mediated by PPAR-γ activation. However, the results in AT1-deficient mice show that blockage of AT1, unrelated to the pharmacological properties of AT1 blockers, also protects against dopaminergic cell death and neuroinflammation. Furthermore, the results show that PPAR-γ activation is involved in the anti-inflammatory and neuroprotective effects of AT1 deletion.</p

    Salt transiently inhibits mitochondrial energetics in mononuclear phagocytes

    Get PDF
    BACKGROUND: Dietary high salt (HS) is a leading risk factor for mortality and morbidity. Serum sodium transiently increases postprandially, but can also accumulate at sites of inflammation affecting differentiation and function of innate and adaptive immune cells. Here, we focus on how changes in extracellular sodium, mimicking alterations in the circulation and tissues, affect the early metabolic, transcriptional and functional adaption of human and murine mononuclear phagocytes (MNP). METHODS: Using Seahorse technology, pulsed stable isotope-resolved metabolomics and enzyme activity assays we characterize the central carbon metabolism and mitochondrial function of human and murine MNP under HS in vitro. HS as well as pharmacologic uncoupling of the electron transport chain (ETC) under normal salt (NS) is used to analyze mitochondrial function on immune cell activation and function (as determined by E.coli killing and CD4(+) T cell migration capacity). In two independent clinical studies we analyze the impact of a HS diet over two weeks (NCT02509962) and short-term salt challenge by a single meal (NCT04175249) on mitochondrial function of human monocytes in vivo. RESULTS: Extracellular sodium was taken up into the intracellular compartment followed by the inhibition of mitochondrial respiration in murine and human macrophages (MΦ). Mechanistically, HS reduces mitochondrial membrane potential, ETC complex II activity, oxygen consumption, and ATP production independently of the polarization status of MΦ. Subsequently, cell activation is altered with improved bactericidal function in HS-treated M1-like MΦ and diminished CD4(+) T cell migration in HS-treated M2-like MΦ. Pharmacologic uncoupling of the ETC under NS phenocopies HS-induced transcriptional changes and bactericidal function of human and murine MNP. Clinically, also in vivo rise in plasma sodium concentration within the physiological range reversibly reduces mitochondrial function in human monocytes. In both, a 14-day and single meal HS challenge, healthy volunteers displayed a plasma sodium increase of ̃x = 2mM and ̃x = 2.3mM, respectively, that correlated with decreased monocytic mitochondrial oxygen consumption. CONCLUSIONS: Our data identify the disturbance of mitochondrial respiration as the initial step by which HS mechanistically influences immune cell function. While these functional changes might help to resolve bacterial infections, a shift towards pro-inflammation could accelerate inflammatory CVD

    Impact of primary kidney disease on the effects of empagliflozin in patients with chronic kidney disease: secondary analyses of the EMPA-KIDNEY trial

    Get PDF
    Background: The EMPA KIDNEY trial showed that empagliflozin reduced the risk of the primary composite outcome of kidney disease progression or cardiovascular death in patients with chronic kidney disease mainly through slowing progression. We aimed to assess how effects of empagliflozin might differ by primary kidney disease across its broad population. Methods: EMPA-KIDNEY, a randomised, controlled, phase 3 trial, was conducted at 241 centres in eight countries (Canada, China, Germany, Italy, Japan, Malaysia, the UK, and the USA). Patients were eligible if their estimated glomerular filtration rate (eGFR) was 20 to less than 45 mL/min per 1·73 m2, or 45 to less than 90 mL/min per 1·73 m2 with a urinary albumin-to-creatinine ratio (uACR) of 200 mg/g or higher at screening. They were randomly assigned (1:1) to 10 mg oral empagliflozin once daily or matching placebo. Effects on kidney disease progression (defined as a sustained ≥40% eGFR decline from randomisation, end-stage kidney disease, a sustained eGFR below 10 mL/min per 1·73 m2, or death from kidney failure) were assessed using prespecified Cox models, and eGFR slope analyses used shared parameter models. Subgroup comparisons were performed by including relevant interaction terms in models. EMPA-KIDNEY is registered with ClinicalTrials.gov, NCT03594110. Findings: Between May 15, 2019, and April 16, 2021, 6609 participants were randomly assigned and followed up for a median of 2·0 years (IQR 1·5–2·4). Prespecified subgroupings by primary kidney disease included 2057 (31·1%) participants with diabetic kidney disease, 1669 (25·3%) with glomerular disease, 1445 (21·9%) with hypertensive or renovascular disease, and 1438 (21·8%) with other or unknown causes. Kidney disease progression occurred in 384 (11·6%) of 3304 patients in the empagliflozin group and 504 (15·2%) of 3305 patients in the placebo group (hazard ratio 0·71 [95% CI 0·62–0·81]), with no evidence that the relative effect size varied significantly by primary kidney disease (pheterogeneity=0·62). The between-group difference in chronic eGFR slopes (ie, from 2 months to final follow-up) was 1·37 mL/min per 1·73 m2 per year (95% CI 1·16–1·59), representing a 50% (42–58) reduction in the rate of chronic eGFR decline. This relative effect of empagliflozin on chronic eGFR slope was similar in analyses by different primary kidney diseases, including in explorations by type of glomerular disease and diabetes (p values for heterogeneity all &gt;0·1). Interpretation: In a broad range of patients with chronic kidney disease at risk of progression, including a wide range of non-diabetic causes of chronic kidney disease, empagliflozin reduced risk of kidney disease progression. Relative effect sizes were broadly similar irrespective of the cause of primary kidney disease, suggesting that SGLT2 inhibitors should be part of a standard of care to minimise risk of kidney failure in chronic kidney disease. Funding: Boehringer Ingelheim, Eli Lilly, and UK Medical Research Council
    corecore