8,163 research outputs found

    Ceramic-coated boat is chemically inert, provides good heat transfer

    Get PDF
    Refractory metal foil sprayed with ceramic coating serves as evaporating boat for inorganic materials. The high thermal conductivity of this boat makes it useful with ohmic heaters

    Thin-film gage measures low heat-transfer rates

    Get PDF
    Low heat-transfer gage facilitates determination of the transition between laminar and turbulent conditions, in the boundary layer surrounding slender and moderately slender cones under test in a hypersonic blowdown helium tunnel. The gage consists of a thin layer of vacuum-evaporated platinum on a heat resistant glass substrate contoured to fit model surfaces

    Writhing Geometry at Finite Temperature: Random Walks and Geometric phases for Stiff Polymers

    Full text link
    We study the geometry of a semiflexible polymer at finite temperatures. The writhe can be calculated from the properties of Gaussian random walks on the sphere. We calculate static and dynamic writhe correlation functions. The writhe of a polymer is analogous to geometric or Berry phases studied in optics and wave mechanics. Our results can be applied to confocal microscopy studies of stiff filaments and to simulations of short DNA loopsComment: 11 pages with 5 figures. Latex2

    Exposure interlock for oscilloscope cameras

    Get PDF
    An exposure interlock has been developed for oscilloscope cameras which cuts off ambient light from the oscilloscope screen before the shutter of the camera is tripped. A flap is provided which may be selectively positioned to an open position which enables viewing of the oscilloscope screen and a closed position which cuts off the oscilloscope screen from view and simultaneously cuts off ambient light from the oscilloscope screen. A mechanical interlock is provided between the flap to be activated to its closed position before the camera shutter is tripped, thereby preventing overexposure of the film

    Optimal utility and probability functions for agents with finite computational precision

    No full text
    When making economic choices, such as those between goods or gambles, humans act as if their internal representation of the value and probability of a prospect is distorted away from its true value. These distortions give rise to decisions which apparently fail to maximize reward, and preferences that reverse without reason. Why would humans have evolved to encode value and probability in a distorted fashion, in the face of selective pressure for reward-maximizing choices? Here, we show that under the simple assumption that humans make decisions with finite computational precision––in other words, that decisions are irreducibly corrupted by noise––the distortions of value and probability displayed by humans are approximately optimal in that they maximize reward and minimize uncertainty. In two empirical studies, we manipulate factors that change the reward-maximizing form of distortion, and find that in each case, humans adapt optimally to the manipulation. This work suggests an answer to the longstanding question of why humans make “irrational” economic choices

    Processing technology for high efficiency silicon solar cells

    Get PDF
    Recent advances in silicon solar cell processing have led to attainment of conversion efficiency approaching 20%. The basic cell design is investigated and features of greatest importance to achievement of 20% efficiency are indicated. Experiments to separately optimize high efficiency design features in test structures are discussed. The integration of these features in a high efficiency cell is examined. Ion implantation has been used to achieve optimal concentrations of emitter dopant and junction depth. The optimization reflects the trade-off between high sheet conductivity, necessary for high fill factor, and heavy doping effects, which must be minimized for high open circuit voltage. A second important aspect of the design experiments is the development of a passivation process to minimize front surface recombination velocity. The manner in which a thin SiO2 layer may be used for this purpose is indicated without increasing reflection losses, if the antireflection coating is properly designed. Details are presented of processing intended to reduce recombination at the contact/Si interface. Data on cell performance (including CZ and ribbon) and analysis of loss mechanisms are also presented

    Simulator model specification for the augmentor wing jet STOL research aircraft

    Get PDF
    The configuration and simulation studies of a C-8A (De Havilland Buffalo) aircraft are described. The modifications to STOL configuration consisted of augmentor-wing jet flaps, blown and drooped ailerons, and leading edge slats. The total simulator model includes a number of component parts for producing realistic visual, aural, tactile, vestibular, and kinesthetic cues for the pilot to assess the predicted behavior of the real airplane

    Further research on high open circuit voltage in silicon solar cells

    Get PDF
    The results of a new research on the use of controlled dopant profiles and oxide passivation to achieve high open circuit voltage V sub oc in silicon solar cells is presented. Ion implantation has been used to obtain nearly optimal values of surface dopant concentration. The concentrations are selected so as to minimize heavy doping effects and thereby provide both high blue response and high V sub oc ion implantation technique has been successfully applied to fabrication of both n-type and p-type emitters. V sub oc of up to 660 mV is reported and AMO efficiency of 16.1% has been obtained

    Hyperbola-generator for location of aperiodic events

    Get PDF
    Plotting device, when used in conjunction with three or more detectors and local receiver and recorder, can quickly pinpoint location of any aperiodic event. Operation requires minimal training and is readily adapted to the field. Mechanical error in device prototype is less than or equal to 3 percent
    corecore