189 research outputs found

    From seaweeds to cosmeceutics: A multidisciplinar approach

    Get PDF
    Macroalgae are widespread on the coasts of all the globe and lead to a negative ecological impact, requiring expensive remediations. Therefore, the valorization of invasive seaweed as a renewable source of bioactive products could represent a valid solution. In this context, three algal biomasses, belonging to brown, green, and red families (Sargassum muticum, Ulva lactuca, Solieria filiformis), collected in the venetian Laguna, were investigated as a source of active compounds for the formulation of cosmeceutics. Microwave (MW) and ultrasound (US) were applied to enhance the algae extraction by means of a hydroalcoholic solution. According to total phenolic content (TPC) evaluation, MW demonstrated the best performing outcomes, resulting in 19.77, 22.02, and 16.94 mgGAE/gExtr (30 min at 90â—¦C) for brown, green, and red algae, respectively. Antioxidant activity was tested as well, showing comparable trends (49.19, 26.24, and 3.02 mmolTrolox eq./gExtr for brown, green, and red algae, respectively). Due to natural algae predisposition to absorb contaminants, the metal content analysis helped to screen the applicability of these extracts, identifying Ulva lactuca as the most suitable source of antioxidants for cosmetic formulations. This MW extract was then adopted to formulate two different preparations, namely a gel and an emulsion. Thermal and mechanical tests confirmed the stability of each formulation, together with neutral organoleptic characteristics. Finally, the actives release was investigated by means of a tape stripping essay, showing an efficient controlled release for gel formulation, even after 7 h of test. The produced cosmeceutics merged non-conventional extraction technologies with formulation expertise, offering a valuable alternative to solve the macroalgae disposal issue

    Edelfosine induced suicidal death of human erythrocytes

    Get PDF
    Background/Aims: The anti-inflammatory, anti-autoimmune, antiparasitic, and anti-viral ether phospholipid edelfosine (1-O-octadecyl-2-O-methylglycero-3-phosphocholine) stimulates apoptosis of tumor cells and is thus considered for the treatment of malignancy. Similar to apoptosis of nucleated cells, erythrocytes may enter eryptosis, the suicidal erythrocyte death characterized by cell shrinkage and phospholipid scrambling of the cell membrane with phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include Ca2+ entry with increase of cytosolic Ca2+ activity ([Ca2+]i) and oxidative stress. The present study explored, whether and how edelfosine induces eryptosis. Methods: Flow cytometry and photometry, respectively, were employed to estimate phosphatidylserine exposure at the cell surface from annexin-V-binding, cell volume from forward scatter, hemolysis from hemoglobin release, [Ca2+]i from Fluo3-fluorescence, and abundance of reactive oxygen species (ROS) from 2',7'-dichlorodihydrofluorescein diacetate (DCFDA) fluorescence. Results: A 6 hours exposure of human erythrocytes to edelfosine (5 \u3bcM) significantly increased the percentage of annexin-V-binding cells, significantly decreased forward scatter, and significantly increased Fluo3-fluorescence, but did not significantly modify DCFDA fluorescence. The effect of edelfosine on annexin-V-binding was significantly blunted, but not abolished by removal of extracellular Ca2+. Conclusions: Edelfosine triggers cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane, an effect in part due to stimulation of Ca2+ entry

    IFI16 reduced expression is correlated with unfavorable outcome in chronic lymphocytic leukemia

    Get PDF
    Chronic lymphocytic leukemia (CLL) is the most common leukemia in adults. Its clinical course is typically indolent; however, based on a series of pathobiological, clinical, genetic, and phenotypic parameters, patient survival varies from less than 5 to more than 20 years. In this paper, we show for the first time that the expression of the interferon-inducible DNA sensor IFI16, a member of the PYHIN protein family involved in proliferation inhibition and apoptosis regulation, is associated with the clinical outcome in CLL. We studied 99 CLLs cases by immunohistochemistry and 10 CLLs cases by gene expression profiling. We found quite variable degrees of IFI16 expression among CLLs cases. Noteworthy, we observed that a reduced IFI16 expression was associated with a very poor survival, but only in cases with ZAP70/CD38 expression. Furthermore, we found that IFI16 expression was associated with a specific gene expression signature. As IFI16 can be easily detected by immunohistochemistry or flow cytometry, it may become a part of phenotypic screening in CLL patients if its prognostic role is confirmed in independent series

    Nocodazole Induced Suicidal Death of Human Erythrocytes

    Get PDF
    Background: The microtubule assembly inhibitor nocodazole has been shown to trigger caspase-independent mitotic death and caspase dependent apoptosis. Similar to apoptosis of nucleated cells, erythrocytes may undergo eryptosis, the suicidal erythrocyte death characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Stimulators of eryptosis include increase of cytosolic Ca2+ activity ([Ca2+]i), oxidative stress and ceramide. The present study explored, whether and how nocodazole induces eryptosis. Methods: Flow cytometry was employed to determine phosphatidylserine exposure at the cell surface from annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, the abundance of reactive oxygen species (ROS) from 2\u2032,7\u2032-dichlorodihydrofluorescein (DCF) diacetate dependent fluorescence as well as ceramide surface abundance utilizing specific antibodies. Tubulin abundance was quantified by TubulinTracker\u2122 Green reagent and visualized by confocal microscopy. Results: A 48 hours exposure of human erythrocytes to nocodazole ( 65 30 \u3bcg/ml) significantly increased the percentage of annexin-V-binding cells without significantly modifying average forward scatter. Nocodazole significantly increased Fluo3-fluorescence, significantly increased DCF fluorescence and significantly increased ceramide surface abundance. The effect of nocodazole on annexin-V-binding was significantly blunted, but not abolished by removal of extracellular Ca2+ and was not modified in the presence of Caspase 3 inhibitor zVAD (1 \u3bcM). Nocodazole treatment reduced the content of total tubulin. Conclusions: Nocodazole triggers cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane, an effect in part due to stimulation of Ca2+ entry, oxidative stress and ceramide

    Ni/TiO2 for ethanol steam reforming: which is the best synthetic approach?

    Get PDF
    The performance of Ni/TiO2 catalysts in ethanol steam reforming (SR) was considered in this study; in particular, the effects of both the methodology of Ni introduction and calcination temperature were deeply investigated. Activity strongly depends on the physico-chemical properties of the catalyst, that greatly change according to the synthetic approach. Introduction Ethanol SR for a cleaner hydrogen production is an attracting topic for researchers and the design of a highly active and selective catalyst is a key point for the fulfilment of this process on industrial scale. Nickel is known to be both active and selective in the SR reactions, but also the support plays an essential role. The aim of this work is the investigation of the effect of the synthetic parameters on the physico-chemical properties of the sample and on its catalytic performance. Experimental TiO2 support was prepared by a conventional precipitation method . Ni (10 wt%) was added to the support by means of incipient wetness impregnation with an aqueous solution of the metallic precursor, either before (NiC) or after (CNi) the calcination of the support. Samples were calcined at 500 \ub0C (NiC500 and CNiC500) or at 800 \ub0C (NiC800). The samples were characterized by X-ray diffraction (XRD), temperature programmed reduction (TPR), high-resolution transmission electron microscopy (HR-TEM) and N2 physisorption. Activity tests were performed after reduction of the catalysts in H2 flow for 1h at 500 \ub0C for samples calcined at 500 \ub0C, at 800 \ub0C for NiC800. The activity tests were carried out at atmospheric pressure by feeding a 3:1 (mol/mol) H2O:CH3CH2OH mixture at 500 \ub0C. Results and discussion The characterization measurements we carried out reveal marked differences among the samples, in particular for what concerns the interactions between the active phase and the support and, as a consequence, Ni availability to the reaction. XRD pattern on NiC500 before the reduction reveals only nanocrystalline anatase. This suggests that all nickel species have been incorporated in the anatase lattice1, , thus making Ni unavailable for the reaction. In fact, this sample is almost completely inactive in ethanol SR. Ni incorporation in TiO2 is due to Ni impregnation before the calcination of the support. When Ni is added to the calcined support (CNiC500), no incorporation in the anatase lattice is detected. This sample is more active than NiC500 (EtOH conversion: 82%; H2 productivity: 0.21 mol min-1 kgcat-1), but it is not stable. The calcination treatment at high temperature (NiC800) stabilizes the active phase by strengthening the interactions of Ni species with the support (SMSI), with the formation of an ilmenite-type structure (NiTiO3) in which nickel is still reducible to Ni0. The catalytic performance of this catalyst is satisfactory, with an ethanol conversion of 99% and a H2 productivity of 0.84 mol min-1 kgcat-1. Conclusions The ability of the support to increase Ni availability to the reaction and to stabilize the active phase is of primary importance to achieve both high ethanol conversion and H2 productivity. The results indicate that TiO2-supported Ni systems are very sensitive to the synthetic procedure. The best catalytic performances are obtained by calcining at the highest temperature
    • …
    corecore