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Chronic lymphocytic leukemia (CLL) is the most common leukemia in adults. Its clinical course is typically indolent;
however, based on a series of pathobiological, clinical, genetic, and phenotypic parameters, patient survival varies from
less than 5 to more than 20 years. In this paper, we show for the first time that the expression of the interferon-induci-
ble DNA sensor IFI16, a member of the PYHIN protein family involved in proliferation inhibition and apoptosis regu-
lation, is associated with the clinical outcome in CLL. We studied 99 CLLs cases by immunohistochemistry and 10
CLLs cases by gene expression profiling. We found quite variable degrees of IFI16 expression among CLLs cases.
Noteworthy, we observed that a reduced IFI16 expression was associated with a very poor survival, but only in cases
with ZAP70/CD38 expression. Furthermore, we found that IFI16 expression was associated with a specific gene expres-
sion signature. As IFI16 can be easily detected by immunohistochemistry or flow cytometry, it may become a part of
phenotypic screening in CLL patients if its prognostic role is confirmed in independent series.
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Chronic lymphocytic leukemia (CLL) is the most
common leukemia type in adults in Western coun-
tries (1). Rarely, the disease lacks the typical spread
of leukemia, presenting with evident nodal localiza-
tion, and it is classified as a small lymphocytic lym-
phoma (SLL) (1). Clinically, CLL is indolent, with
a median overall survival (OS) exceeding 15 years
(2). However, based on clinical (e.g., stage and
doubling time), phenotypic, and genetic features, it

can be completely indolent or quite aggressive.
Specifically, the overall expression of CD38,
ZAP70, LAIR1, and CD49d biomarkers, though
not univocally, indicates an activation of the leuke-
mic B cell and it is related to a worse outcome (3–
5). In addition, immunohistological analyses have
demonstrated that the identification of abundant
proliferating centers is associated to a worse behav-
ior (6). Similarly, the absence of somatic hypermu-
tations in the immunoglobulin heavy chain genes
(IGH) or recognition of specific stereotypesReceived 25 October 2016. Accepted 8 February 2017
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indicates an aggressive disease (1, 3, 4). Genetically,
few chromosomal imbalances that can be detected
by a FISH analysis, including del(17p), del(11q),
+12, and del(13q), are associated with a more or
less aggressive clinical behavior (7). Recently, next-
generation sequencing has allowed the identification
of a series of lesions affecting TP53, BIRC3,
SF3B1, MYD88, and NOTCH1 that significantly
influence patient prognosis (8). Expression levels of
specific miRNA have also been associated with
clinical outcome, although these results have occa-
sionally been controversial (9–11). Notably, the
integration of FISH and molecular data has been
clinically meaningful in defining subgroups with
significant differences in overall survival (8). How-
ever, despite such evidence, most patients are not
currently evaluated at diagnosis with a complete
molecular and genetic make-up. Patients sometimes
undergo FISH and extensive gene sequencing at
disease progression if aged below 60–65 years old
(12). Conversely, most patients are studied at diag-
nosis using flow cytometry (CD38/ZAP70) and
IGH@ sequencing only.

Recently, our group indicated that IFI16 is regu-
lated during B-cell differentiation (13). Its levels are
particularly elevated in memory B cells.

In addition, IFI16 expression has been shown to
have an intriguing relationship with some major
transcription factors, such as BCL6, NF-jB, STAT3,
and STAT5, involved in central processes of the
B-cell biology (13,14). IFI16 is a member of the
PYHIN family of proteins and is involved in
immune response, cell viability, differentiation, pro-
liferation, senescence, and restriction of virus replica-
tion (15–17). Specifically, IFI16 plays a central role
in innate immunity, especially during viral infections.
IFI16 is a DNA sensor that regulates IFN expres-
sion and inflammasome activation by negatively
affecting the viability of infected cells (18–21). In
addition to its role in innate immunity, several
observations have indicated that IFI16 is a transcrip-
tional regulator through heterodimerization with
other transcription factors, which suggest different
roles of IFI16 depending on the cell type (15). In dif-
ferent cell models, IFI16 has been demonstrated to
either activate apoptosis or inhibit proliferation by
interacting with other cell cycle and survival gate-
keepers including p53 and Rb, and in addition, it is
able to restrict virus replication (21–25). This anti-
tumor activity is not absolute but is well-described
in different cell models (16, 26, 27). Together, these
studies suggest that an alteration in IFI16 activity
and/or expression could play an important role in B-
cell proliferation. Hence, we investigated IFI16
expression in CLL to uncover its potential patho-
genetic/prognostic role in this study.

MATERIALS AND METHODS

Case series

A total of 99 lymph node samples obtained from CLL
patients diagnosed according to NCI criteria were
included in this study. Lymph node biopsies in these
patients were performed in the presence of progressive dis-
ease requiring treatment, with adenopathies ≥3 cm (6).
Patients were referred to the Hematopathology Unit of S.
Orsola-Malpighi Hospital, Bologna University, Bologna,
Italy, for a histological diagnosis between 2002 and 2008.
The only selection criterion was the availability of a suffi-
cient amount of formalin-fixed paraffin-embedded (FFPE)
tissue. The main clinical-pathological features of these
patients are summarized in Table 1. The cases showing
confluent proliferation centers (PCs) were classified as
“PC-rich”. Additionally, 10 CLL cases were studied, previ-
ously generated by our group (28).

Immunohistochemistry and fluorescence in situ
hybridization (FISH) on tissue microarrays

A Giemsa-stained slide was prepared from each paraffin
block containing representative tumor regions marked on
every slide. Tissue cylinders with a diameter of 1.0 mm
were punched from the marked areas on each block and
placed in a recipient paraffin block using a precision
instrument as previously described (6, 10). Punches were
performed on areas of monotonous small lymphocytes
and on areas with proliferating centers, when present.
Tissue microarrays (TMAs) were prepared for immunohis-
tochemistry and fluorescence in situ hybridization FISH
studies.

Table 1. Patients’ characteristics

Patients 99

Age (median, range), years 67.5 (28–84)
Gender (M/F) 66/33
FISH
11q 22/66 (33.3%)
+12p 15/74 (20.3%)
13q 26/84 (31%)
14q 21/72 (29.2%)
17p 12/84 (14.3%)

Disease stage
0 4
1 21
2 11
3 5
4 5

TP53 mutations 0/99
PC-rich 39/99 (39.4%)
CD38 34/99 (34%)
ZAP70 26/96 (26%)
ZAP70 and/or CD38 44/99 (44%)
IFI16
High (IHC score 1–2) 57/99 (57.6%)
Low (IHC score 3–5) 42/99 (42.4%)

PC-rich, proliferating centers rich, IHC, immunohisto-
chemistry.
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We studied the expression of ZAP70, CD38, and IFI16
by immunohistochemistry (IHC) on TMAs from the 99
cases (in duplicate cores). From each recipient block, 1.5-
lm-thick sections were cut and tested with anti-ZAP70
(Upstate, Millipore, Billerica, MA, USA, clone 2F3.2:
dilution 1:80; (29,30)), anti-CD38 (Novocastra, Menarini
Diagnostics, Grassina, Italy, clone SPC32: dilution 1:80),
and anti-IFI16 mouse monoclonal antibodies (Sigma,
Milan Italy, dilution 1:100). Briefly, paraffin-embedded
sections were dewaxed and submitted to antigen retrieval
by heating in Dako PTLink (DakoCytomation, Glostrup,
Denmark; code PT100/PT101) in an EnVision Flex Target
Retrieval Solution High pH (DakoCytomation; code
K8004) at 92 °C for 5 min. Sections were incubated at
room temperature with fetal calf serum (10 min) and then
with the specific primary antibody (for 30 min). Each
evaluation was performed by at least two expert
hematopathologists blinded to the study. Scores were com-
pared and consensus agreement was reached at the micro-
scope in all cases.

Immunohistochemistry stainings were scored based on
the percentage of positive neoplastic cells (visual count
performed by two hematopathologists) as follows: 0 = no
positive cells; 1 = 1–20%; 2 = 21–40%; 3 = 41–60%; 4 =
61–80%; and 5 = 81–100%. Micrographs were obtained
using an Olympus BX61 microscope equipped with an
Olympus DP-70 digital camera, and image acquisition,
evaluation, and color balance were performed using
Cell^F software. The probes used in fluorescence in situ
hybridization FISH study, as well as preparation of the
slides, hybridization, and cut-off for positivity FISH signal
screening are detailed in our previous report (6).

Gene expression analyses

We analyzed the previously generated gene expression pro-
file (GEP) data reported by our group on 10 CLL cases
(28) not included within the 99 studied by IHC. All data
were obtained using Affymetrix HG-U133 2.0 plus
microarrays (Affymetrix, Inc. http://www.affymetrix.c
om/support/index.affx) available at http://www.ncbi.nlm.
nih.gov/projects/geo/(28). For further technical details and
patient characteristics, see references (28).

We focused our analysis on IFI16 expression. We iden-
tified IFI16 expression using three different probe sets
(206332_s_at; 208966_x_at; and 208965_s_at) in the HG-
U133 datasets and one (1456_s_at) in HG-U95. The mean
values from the three probes were used to analyze HG-
U133 data. GEP analyses were performed using Gene-
Spring GX 12.0 Software (Agilent Technologies, Santa
Clara, CA, USA; (28, 29, 31, 32)).

Statistical analysis

Statistical analyses were performed using IBM SPSS
Statistics 20.0. ANOVA and unpaired T-tests were used.
When a sample size was less than 10 cases in at least one
group, a non-parametric (Mann–Whitney) test was used
to analyze the GEP data to compare IFI16 expression in
different subgroups (11). The limit of significance for all
analyses was defined as p < 0.05. Two-sided tests were
used in all calculations. Possible relationships between the
immunohistochemical expression of IFI16 and other clin-
ico-pathological parameters were evaluated using a T-test

or chi-square test for continuous and non-continuous vari-
ables, respectively (6, 10). The univariate association
between individual clinical features and DSS was deter-
mined with the log-rank or Wilcoxon test, when appropri-
ate. A multivariate analysis using the Cox proportional
hazards regression model was performed to compare the
factors studied in univariate analysis. The limit of signifi-
cance for all analyses was defined as p < 0.05; two-sided
tests were used in all calculations.

RESULTS

IFI16 is variably expressed in B-CLL

We tested IFI16 protein expression in the 99 lymph
nodes from patients affected by CLL/SLL and the
5 lymph nodes characterized by florid reactive
hyperplasia. We observed IFI16 expression in all
the CLL and non-neoplastic hyperplastic samples.
As expected, the latter had intense staining mainly
localized in the mantle zone. This confirmed our
data from previous studies (13). In the CLL cases,
nuclear staining was detected in 10–100% of the
cells. The overall staining was intense. Only a few
cases had a weaker reaction that was not related to
other features, including the percentage of positive
cells. In cases with a prominent proliferating center
(PC), we observed a gradient of IFI16 expression,
which was higher within the PC (Fig. 1). However,
no significant correlation between the abundance of
PC and IFI16 expression was recorded. The expres-
sion pattern (mainly nuclear) corresponded to the
one, previously reported in human lymphocytes
(13). Overall, TMAs resulted adequate for a proper
evaluation and full section re-evaluation was not
needed.

IFI16 lower protein levels are associated with

unfavorable outcome

We investigated whether IFI16 protein expression
was correlated with any specific clinic-pathological
parameter. No significant correlation was observed,
with the exception of del(13q) that was associated
with a significantly lower IFI16 expression
(Table 2; Fig. 2). Despite the significance at T-test,
as IFI16 protein expression values in terms of per-
centage of positive cells at immunohistochemistry
(IHC) appeared quite overlapping in the two
groups (with and without del13p, respectively)
(Fig. 2), we also tested by chi-square whether cases
without del13p had more frequently higher (i.e.,
more than 50% of positive cells at IHC) IFI16
expression. Indeed, also this correlation turned out
to be statistically significant (p = 0.02).

We then tested the possible impact of the main
clinic-pathological parameters on the clinical out-
come. Following the univariate analysis, only the
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presence of del(13q) and del(17p) and a low IFI16
expression correlated with an inferior OS (Table 3;
Fig. 3).

When the CLLs were divided into two groups,
based on IFI16 expression (i.e., scored at immuno-
histochemistry 0–2 vs 3–5, IFI16low vs IFI16high,
respectively), the group with lower IFI16 expression
was characterized by a significantly shorter mean
OS (55.6 vs 95.4 months, 95% confidence interval
78.9–111.7 vs 27.7–83.6). A median OS, in the
IFI16high group was not reached. However, the

median OS in the IFI16low group was 46 months
(Fig. 3). By contrast, in the multivariate analysis,
only the presence of genetic lesions affecting chro-
mosomes 14p and 17p were associated with a
shorter OS.

Finally, because IFI16 expression can correlate
with physiological lymphocyte activation, we inves-
tigated whether IFI16 expression might be related
to CLL cell activation, as well. For this purpose,
each CLL case was considered “activated” if either
CD38 or ZAP70 was expressed. Based on this crite-
rion, we divided the cases into four groups accord-
ing to IFI16 and ZAP70/CD38 protein expression
(Fig. 3; Table 4) to test a possible prognostic
impact. The four groups were, in fact, significantly
different in OS (p = 0.004). Specifically, patients
with high ZAP70/CD38 but low IFI16 expression

Fig. 1. IFI16 protein expression. IFI16 expression in CLL
lymph node biopsies: examples of cases with low expres-
sion (partial expression below cut-off of 50% of the cells;
examples of weak positive cells are highlighted by black
arrows) (A) and high expression (B).

Table 2. Correlation between protein IFI16 expression
and the main clinico-pathological parameters

Parameter Test p-value for possible
correlation

ZAP70 Chi-square 0.028
CD38 Chi-square 0.299
ZAP70 and or CD38 Chi-square 0.02
WBC at diagnosis T-test 0.7
del(11q) Chi-square 1
+12p Chi-square 0.76
del(13q) Chi-square 0.015
del(14q) Chi-square 0.79
del(17q) Chi-square 0.35
TP53 mutations Chi-square 1
B2 T-test 0.85
Stage Chi-square 0.86
Age T-Test 0.55
PC-rich Chi-square 0.2

Fig. 2. Differential expression of IFI16 protein in cases
carrying or not 13q abnormalities as detected by FISH
analysis. Two-tailed T-test was used for comparison.
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(group 3) had worse outcomes (median 6.5 months,
95% confidence interval 4.4–8.6 months). Those
with higher IFI16, both with lower (group 2) or
negative (group 1) ZAP70/CD38 expression had the
best outcomes (median not reached; mean 86.7 and
97.7 months, respectively; 95% confidence interval
69–104.4 and 76.3–119.2 months, respectively). The
CLLs characterized by IFI16 low and no ZAP70/
CD38 expression had an intermediate clinical pro-
file (median survival 46 months; 95% confidence
interval 0–93.4 months; Fig. 5).

IFI16 low expression is associated with a peculiar

gene expression profile

To better understand the pathobiological signifi-
cance of IFI16 expression in CLL, we compared
the GEP of CLLs with higher (>50% percentile)
and lower (< 50% percentile) IFI16 gene expres-
sion. In a supervised analysis (T-test, p < 0.05), we
identified 271 probe sets, which corresponds to 226
unique genes differentially expressed between the
two groups (Fig. 4; raw data available upon
request). Specifically, 163 were up-regulated and 63
were down-regulated in the more aggressive group
(i.e., with lower IFI16 expression).

In the IFI16low CLL group, we observed up-reg-
ulation of JUN and JUNB, two transcription fac-
tors often up-regulated in malignant phenotypes,
and CXCR4, a chemokine receptor that regulates
bone marrow adhesion of neoplastic elements which
possibly contributes to chemoresistance in CLL
(33). Down-regulation of IKZF3, a tumor suppres-
sor previously found to be altered in lymphoid leu-
kemias and other cancers (34) was also observed.

When we investigated pathways and cellular pro-
grams possibly overrepresented among the differen-
tially expressed genes, we found several biological
processes and cancer-related molecular signatures/
pathways (Fig. 4; Tables 5-6). We noted a signifi-
cant enrichment in the expression of genes involved
in DNA repair, RNA processing and transcription,
and response to stress and DNA damage. We also
found that the expression of genes usually involved
in the EGFR, VEGF, MTOR, and PDGFR signal-
ing, and genes, associated with RB1, RBL2, and
KRAS deregulation, were enriched.

DISCUSSION

Chronic lymphocytic leukemia is typically indolent.
However, patient survival varies from less than 5 to
more than 20 years depending on the biological char-
acteristics of the disease (8). Accordingly, treatments
have to be tailored based on patients’ specific features.
These treatments range from watch-and-wait to
chemo-immunotherapy, signaling inhibitors, and stem
cell transplantation (35–37). The main biological
parameters that influence CLL aggressiveness are
genetic (such as immunoglobulin somatic hypermuta-
tions/ISHM or somatic lesions detectable by FISH or
DNA sequencing) and functional (usually detected by
flow cytometry and indicative of cellular activation).
Although a complete genetic characterization is prob-
ably the optimal approach to CLL prognostication,
for practical reasons, mainly timing and cost, only
phenotypic characterization is used in elderly people.
Genetic characterization is used more often in patients
presenting with symptoms at a younger age. Recently,

Table 3. Overall survival analysis of CLL patients according to risk factors significantly associated with overall survival

Means and medians for survival time p-value (Log-Rank
(Mantel–Cox))Mean2 Median

Estimate Std. Error 95% Confidence
interval

Estimate Std.
Error

95% Confidence
interval

Lower
bound

Upper
bound

Lower
bound

Upper
bound

IFI161

High 95.363 8.372 78.953 111.773 0.003
Low 55.619 14.256 27.677 83.561 46.000 19.140 8.485 83.515
Overall 88.570 10.581 67.832 109.308 87.000 12.357 62.780 111.220

FISH14q
NEG 86.282 6.376 73.785 98.780 104.000 14.513 75.554 132.446 0.011
POS 55.946 9.946 36.451 75.440 46.000 .721 44.588 47.412
Overall 78.997 5.549 68.121 89.872 87.000 11.703 64.062 109.938

FISH17p
NEG 97.376 7.334 83.002 111.751 113.000 9.187 94.994 131.006 0.002
POS 51.939 6.922 38.372 65.506 45.000 6.606 32.053 57.947
Overall 89.828 6.719 76.660 102.997 104.000 16.101 72.441 135.559

1Assessed by IHC on tissue microarrays.
2Estimation is limited to the largest survival time if it is censored.
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the importance of the phenotypic profiling has been
highlighted by the identification of progranulin, a
molecule overexpressed in CD38+/ZAP70+ cases with
negative prognostic relevance (38).

In this study, we explored the possible relation
between IFI16 expression and prognosis. IFI16 is
an interferon-related molecule that regulates cellular

activation, signaling, and eventually, cell prolifera-
tion and apoptosis (15–17, 21, 39, 40). In B cells,
IFI16 expression consistently parallels maturation
and differentiation of the germinal center toward
memory and plasma cells (13, 41). For the first
time, we found that IFI16 expression might be
related to CLL clinical outcomes. Specifically,

Fig. 3. Kaplan–Meier plots of CLL patients according to risk factors significantly associated with overall survival. The
outcome according to chromosome 14 abnormalities (A), chromosome 17 abnormalities (B), and IFI16 protein expression
(C) are shown. In panel D, four groups were designated based on the expression of IFI16, CD38, and ZAP70 (Group 1:
IFI16+ and ZAP70/CD38-; Group 2: IFI16+ and ZAP70/CD38+; Group 3: IFI16- and ZAP70/CD38+; Group 4: IFI16-
and ZAP70/CD38-).
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reduced IFI16 corresponded to a worse clinical sce-
nario when molecules such as ZAP70 and CD38
were expressed (median survival 6.5 months). As

IFI16 expression is retained in the normal cellular
counterparts of CLL (13), a reduced expression can
be used as a pathological feature.

Table 4. Overall survival analysis of CLL patients according to IFI16, CD38, and ZAP70 protein expression

Group Means and medians for survival time p-value (Log-Rank
(Mantel–Cox))Mean1 Median

Estimate Std. Error 95% Confidence
interval

Estimate Std. Error 95% Confidence
interval

Lower
bound

Upper
bound

Lower
bound

Upper
bound

1 97.763 10.935 76.330 119.195 0.004
2 86.734 9.015 69.065 104.403
3 6.500 1.061 4.421 8.579 5.000
4 59.235 14.827 30.174 88.296 46.000 24.201 0.000 93.434
Overall 90.435 10.453 69.946 110.923 87.000 9.600 68.183 105.817

Group 1: IFI16 + and ZAP70/CD38- (N = 25 case);

Group 2: IFI16 + and ZAP70/CD38 + (N = 30 case);

Group 3: IFI16- and ZAP70/CD38 + (N = 12 case);

Group 4: IFI16- and ZAP70/CD38- (N = 28 case).

1Estimation is limited to the largest survival time if it is censored.

Fig. 4. Gene expression analysis of CLL according to IFI16 expression. Supervised analysis was performed in CLL cases
with high vs low IFI16 gene expression. Based on the expression of 226 genes (corresponding to 271 probe sets), cases with
higher or lower IFI16 levels were clearly discriminated (A). The dendrograms are generated using a hierarchical clustering
algorithm based on the average-linkage method. In the matrix, each column represents a sample and each row represents a
gene. The color scale bar shows the relative gene expression changes normalized by the standard deviation (0 is the mean
expression level of a given gene). The above-mentioned 271 genes turned out to be significantly enriched in relevant onco-
genic pathways (B) and GeneOntology Biological Processes (C).
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Because of the known functions of IFI16, it is
conceivable that the lack of IFI16, which is associ-
ated with a reduced antiproliferative effect, might
be particularly severe in cells constitutively receiv-
ing an activation/proliferation signaling. Therefore,

it should be noted that the prognostic role of
ZAP70 and CD38 expression has not been con-
firmed. Based on the present results, we can assume
that the balance between IFI16 expression and acti-
vation signaling (mediated by ZAP70/CD38) may

Table 5. GSEA on oncogenic signatures

Gene Set Name # Genes in
Gene Set (K)

Description # Genes in
Overlap (k)

k/K p-value FDR
q-value

PIGF UP.V1 UP 191 Genes up-regulated in HUVEC
cells (endothelium) by treatment
with PIGF [Gene ID = 5281]

10 0.0524 1.31E-08 2.48E-06

RB P130 DN.V1 DN 139 Genes down-regulated in primary
keratinocytes from RB1 and
RBL2 [Gene ID = 5925, 5934]
skin-specific knockout mice.

6 0.0432 3.40E-05 1.11E-03

CSR EARLY
UP.V1 UP

164 Genes up-regulated in early serum
response of CRL 2091 cells
(foreskin fibroblasts)

7 0.0427 8.05E-06 7.60E-04

SIRNA EIF4GI UP 95 Genes up-regulated in MCF10A
cells vs knockdown of EIF4G1
[Gene ID = 1981] gene by RNAi

4 0.0421 7.98E-04 1.26E-02

EGFR UP.V1 UP 193 Genes up-regulated in MCF-7 cells
(breast cancer) positive for ESR1
[Gene ID = 2099] and engineered
to express ligand-activatable
EGFR [Gene ID = 1956]

7 0.0363 2.31E-05 1.09E-03

VEGF A UP.V1 DN 193 Genes down-regulated in HUVEC
cells (endothelium) by treatment
with VEGFA [Gene ID = 7422]

7 0.0363 2.31E-05 1.09E-03

MTOR UP.N4.V1 DN 193 Genes up-regulated in CEM-C1
cells (T-CLL) by everolimus
[PubChem = 6442177], an mTOR
pathway inhibitor

6 0.0311 2.07E-04 4.03E-03

HOXA9 DN.V1 UP 194 Genes up-regulated in MOLM-14
cells (AML) with knockdown of
HOXA9 [Gene ID = 3205] gene
by RNAi vs controls

6 0.0309 2.13E-04 4.03E-03

RB P107 DN.V1 UP 140 Genes up-regulated in primary
keratinocytes from RB1 and
RBL1 [Gene ID = 5925, 5933]
skin-specific knockout mice

4 0.0286 3.31E-03 4.46E-02

TBK1.DF DN 287 Genes down-regulated in epithelial
lung cancer cell lines upon
overexpression of an oncogenic
form of KRAS [Gene ID = 3845]
gene and knockdown of TBK1
[Gene ID = 29110] gene by RNAi

8 0.0279 3.97E-05 1.11E-03

PDGF UP.V1 UP 146 Genes up-regulated in SH-SY5Y
cells (neuroblastoma) in response
to PDGF [Gene ID=] stimulation

4 0.0274 3.84E-03 4.84E-02

STK33 UP 293 Genes up-regulated in NOMO-1
and SKM-1 cells (AML) after
knockdown of STK33 [Gene
ID = 65975] by RNAi

8 0.0273 4.59E-05 1.11E-03

PDGF ERK DN.V1 DN 149 Genes down-regulated in SH-SY5Y
cells (neuroblastoma) in response
to PDGF [Gene ID=] stimulation
after pre-treatment with the ERK
inhibitors U0126 and PD98059
[PubChem = 3006531, 4713]

4 0.0268 4.13E-03 4.88E-02

FDR, False discovery rate.
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Table 6. GSEA on GeneOntology biological processes

Gene set name # Genes in
gene set (K)

Description # Genes in
overlap (k)

k/K p-value FDR
q-value

DNA repair 125 Genes annotated by the GO term
GO:0006281. The process of restoring
DNA after damage. Genomes are subject
to damage by chemical and physical
agents in the environment (e.g., UV and
ionizing radiations, chemical mutagens,
fungal and bacterial toxins, etc.) and by
free radicals or alkylating agents
endogenously generated in metabolism.
DNA is also damaged because of errors
during its replication. A variety of
different DNA repair pathways have been
reported that include direct reversal, base
excision repair, nucleotide excision repair,
photoreactivation, bypass, double-strand
break repair pathway, and mismatch
repair pathway

7 0.056 1.33E-06 5.22E-05

RNA processing 173 Genes annotated by the GO term
GO:0006396. Any process involved in the
conversion of one or more primary RNA
transcripts into one or more mature RNA
molecules

9 0.052 7.50E-08 3.64E-06

Response to DNA
damage stimulus

162 Genes annotated by the GO term
GO:0006974. A change in state or activity
of a cell or an organism (in terms of
movement, secretion, enzyme production,
gene expression, etc.) as a result of a
stimulus indicating damage to its DNA
from environmental insults or errors
during metabolism

8 0.0494 5.99E-07 2.47E-05

DNA metabolic
process

257 Genes annotated by the GO term
GO:0006259. The chemical reactions and
pathways involving DNA,
deoxyribonucleic acid, one of the two
main types of nucleic acid, consisting of a
long, unbranched macromolecule formed
from one, or more commonly, two,
strands of linked deoxyribonucleotides

10 0.0389 2.12E-07 9.73E-06

Regulation of
transcription

566 Genes annotated by the GO term
GO:0045449. Any process that modulates
the frequency, rate or extent of the
synthesis of either RNA on a template of
DNA or DNA on a template of RNA

19 0.0336 8.08E-12 9.52E-10

Regulation of
gene expression

673 Genes annotated by the GO term
GO:0010468. Any process that modulates
the frequency, rate or extent of gene
expression. Gene expression is the process
in which a gene’s coding sequence is
converted into a mature gene product or
products (proteins or RNA). This includes
the production of an RNA transcript as
well as any processing to produce a
mature RNA product or an mRNA (for
protein-coding genes) and the translation
of that mRNA into protein. Some protein
processing events may be included when
they are required to form an active form
of a product from an inactive precursor
form

22 0.0327 2.81E-13 5.79E-11
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Table 6 (continued)

Gene set name # Genes in
gene set (K)

Description # Genes in
overlap (k)

k/K p-value FDR
q-value

RNA metabolic
process

841 Genes annotated by the GO term
GO:0016070. The chemical reactions and
pathways involving RNA, ribonucleic
acid, one of the two main type of nucleic
acid, consisting of a long, unbranched
macromolecule formed from
ribonucleotides joined in 30,50-
phosphodiester linkage

27 0.0321 7.06E-16 1.94E-13

Nucleobase,
nucleoside,
nucleotide,
and nucleic
acid metabolic
process

1244 Genes annotated by the GO term
GO:0006139. The chemical reactions and
pathways involving nucleobases,
nucleosides, nucleotides, and nucleic acids

39 0.0314 2.65E-22 2.19E-19

Regulation of
nucleobase,
nucleoside,
nucleotide, and
nucleic acid
metabolic
process

618 Genes annotated by the GO term
GO:0019219. Any process that modulates
the frequency, rate or extent of the
chemical reactions and pathways involving
nucleobases, nucleosides, nucleotides, and
nucleic acids

19 0.0307 3.62E-11 2.72E-09

Response
to stress

508 Genes annotated by the GO term
GO:0006950. A change in state or activity
of a cell or an organism (in terms of
movement, secretion, enzyme production,
gene expression, etc.) as a result of a
stimulus indicating the organism is under
stress. The stress is usually, but not
necessarily, exogenous (e.g., temperature,
humidity, ionizing radiation)

15 0.0295 7.73E-09 4.25E-07

Regulation of
metabolic
process

799 Genes annotated by the GO term
GO:0019222. Any process that modulates
the frequency, rate or extent of the
chemical reactions and pathways within a
cell or an organism

23 0.0288 1.07E-12 1.76E-10

Biopolymer
metabolic
process

1684 Genes annotated by the GO term
GO:0043283. The chemical reactions and
pathways involving biopolymers, long,
repeating chains of monomers found in
nature, e.g., polysaccharides and proteins

43 0.0255 3.61E-21 1.49E-18

Protein
metabolic
process

1231 Genes annotated by the GO term
GO:0019538. The chemical reactions and
pathways involving a specific protein,
rather than of proteins in general.
Includes protein modification

20 0.0162 4.86E-07 2.11E-05

Cellular
protein
metabolic
process

1117 Genes annotated by the GO term
GO:0044267. The chemical reactions and
pathways involving a specific protein,
rather than of proteins in general,
occurring at the level of an individual cell.
Includes protein modification

18 0.0161 2.1E-06 0.0000783

Cellular
macromolecule
metabolic
process

1131 Genes annotated by the GO term
GO:0044260. The chemical reactions and
pathways involving macromolecules, large
molecules including proteins, nucleic
acids, and carbohydrates, as carried out
by individual cells

18 0.0159 2.5E-06 0.0000891

FDR, False discovery rate.
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represent a more reliable parameter. A maintained
IFI16 expression is capable of at least partially
compensating for the negative influence of ZAP70
and CD38.

The major limitation of this study is the lack of
a comprehensive genetic characterization of the dis-
ease, including all novel markers, because DNA
was not available for such studies. Certainly, the
genetic background might affect IFI16 expression.
Regardless, ISHM, TP53 mutations, and FISH
could be performed as a good basic evaluation. On
the other hand, testing the prognostic value of
IFI16 in an independent, possibly prospective, ser-
ies of cases is warranted. Furthermore, it should be
noted that the distribution of cytogenetic aberra-
tions was quite untypical. In particular, the inci-
dence of del(13q) was lower, while, on the contrary,
the incidence of del(17p) and especially, del(11q)
and del(14q) were higher than expected. However,
as previously discussed (6), the only selection bias
was represented by the availability of tissue.
Finally, to simplify pathological assessment and
increase reproducibility of immunohistochemical
assays, an automated digital analyses would be pos-
sibly applied.

In conclusion, we identified IFI16 as a possible
prognostic marker in CLL. It might be clinically
useful, especially in patients receiving a phenotypic
rather than complete molecular characterization for
any reason.
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