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Gingivitis is a preventable disease characterised by inflammation of the gums due to the buildup of a microbial biofilm at the
gingival margin. It is implicated as a precursor to periodontitis, a much more serious problem which includes associated bone loss.
Unfortunately, due to poor oral hygiene among the general population, gingivitis is prevalent and results in high treatment costs.
Consequently, the option of treating gingivitis using functional foods, which promote oral health, is an attractive one. Medicinal
mushrooms, including shiitake, have long been known for their immune system boosting as well as antimicrobial effects; however,
they have not been employed in the treatment of oral disease. In the current study, the effectiveness of shiitake mushroom extract
was compared to that of the active component in the leading gingivitis mouthwash, containing chlorhexidine, in an artificial mouth
model (constant depth film fermenter). The total bacterial numbers as well as numbers of eight key taxa in the oral community
were investigated over time using multiplex qPCR. The results indicated that shiitake mushroom extract lowered the numbers of
some pathogenic taxa without affecting the taxa associated with health, unlike chlorhexidine which has a limited effect on all taxa.

1. Introduction

Gingivitis is one of the most prevalent infectious diseases
of humans, affecting most of the population at some point
during their lives [1]. It is easily preventable by the removal
of the plaque biofilm but often results in high treatment costs
due to poor oral hygiene among the general population. Gin-
givitis has long been implicated as a potential precursor to
periodontitis [2, 3] and is caused by the buildup of the plaque
biofilm at the gingival margin. This in turn results in a shift
in the resident microbiota as a consequence of environmental
changes [4, 5]. The prevalence of Actinomyces spp., Lactoba-
cillus spp., Prevotella spp., and Fusobacterium nucleatum is
known to increase during gingivitis at the expense of Strepto-
coccus spp. [6–9]. This community shift causes inflammation

of the gingiva as part of the immune response [3, 10, 11].
The disease can be prevented and alleviated by the removal
of the plaque biofilm and by the use of oral hygiene products
such as toothbrushes, toothpastes, and mouthwashes [12].
The constant depth film fermenter (CDFF) has been used
previously to model the bacterial community shifts observed
during gingivitis and has also been employed to assess the
effects of oral hygiene products [13, 14].

Medicinal mushrooms, including Lentinula edodes or
shiitake, have been used in Asia for centuries and have nu-
merous health benefits. These range from their antioxidant
properties, to lowering cholesterol and blood pressure, anti-
tumor properties, and antibacterial and libido-enhancing
properties [15–18]. The health benefits of shiitake mush-
rooms are thought to be so great that they have been
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incorporated into some foods in order to be delivered to the
population, creating functional foods including pork patties,
cereals, and cookies [16, 19, 20]. However, shiitake has not as
yet been assessed for its oral health benefits.

In recent years, high-throughput culture-independent
quantitative methods have revolutionised the investigation
of bacterial community structure. These methods are now
being employed in the study of microbial communities in-
volved in both oral health and disease [21–23]. In the present
study, a set of assays developed previously was used to mon-
itor the bacterial community structure changes within an
in vitro gingivitis model and to assess the effect of shiitake
mushroom extract and chlorhexidine, the leading agent used
in the treatment of gum disease [24], on these communities.

2. Materials and Methods

2.1. Saliva Collection. Healthy individuals with good oral
hygiene were asked to expectorate into a sterile centrifuge
tube up to a volume of 2 mL. Saliva was collected from
20 individuals. The saliva samples were homogenised into
pooled saliva, and glycerol was added to a final concentration
of 10% v/v. The pooled saliva was dispensed into 1 mL
aliquots and stored at −80◦C.

2.2. CDFF Gingivitis Model. In vitro biofilms, representative
of plaque that forms at the gingival margin, were cultured
using a CDFF. The environmental conditions within the
CDFF were modified in order to mimic those found during
gingivitis, as described previously [14]. Briefly, the CDFF was
inoculated by 1 mL of pooled saliva sample added to 500 mL
artificial saliva medium [25] over 8 hours. The biofilms were
cultured at 36◦C for one week. The CDFF was kept under
microaerophilic conditions using a gas mixture (2% O2; 3%
CO2; 95% N at 200 × 105 Pa) pumped into the chamber
through a filtered inlet at a rate of 200 cm3 min−1. Artificial
saliva medium and artificial gingival crevicular fluid [26]
were pumped into the chamber throughout the experiment
at a flow rate of 0.72 litres day−1 and 0.072 litres day−1, re-
spectively.

No antimicrobials were pumped into the CDFF during
the no treatment control (NTC) experiments. During the
chlorhexidine (CHX) and mushroom extract (MUSH) exper-
iments, 0.12% chlorhexidine and 2x low molecular weight
shiitake mushroom extract were pumped into the CDFF
from 80 h and every 12 hours thereafter to mimic the use of
a mouthwash twice daily. Each pulse was pumped in at a rate
of 2 mL min−1 for 5 minutes.

One pan, containing five disks, was removed aseptically
every 24 hours. The biomass of two disks was collected as de-
scribed previously [14] in duplicate. DNA extractions were
then performed on the biomass collected.

2.3. Low Molecular Weight Shiitake Mushroom Extract Prepa-
ration. The 2x low molecular weight mushroom extract was
prepared as described by Daglia et al. [27].

2.4. DNA Extraction Method. Total nucleic acids were ex-
tracted from all samples according to a previously described

protocol [28] using a bead-beating phenol: chloroform:
isoamyl alcohol (25 : 24 : 1) extraction followed by a 30%
PEG 6000 precipitation and 70% ethanol wash. This method
was found to be the least biased towards the extraction of
nucleic acids from Gram-negative organisms.

2.5. qPCR Method. Three triplex qPCR assays were designed
to enumerate four organisms associated with gingivitis (Acti-
nomyces naeslundii, Fusobacterium nucleatum, Lactobacillus
casei, and Prevotella intermedia), three organisms associated
with oral health (Streptococcus sanguinis, Neisseria subflava,
and Veillonella dispar), one organism strongly implicated in
dental caries (Streptococcus mutans), and all organisms as
described previously [23]. The detection limits for each of
the single taxa were 20 cells and the number rose to 600 cells
for the universal assay.

2.6. Statistics. Data were normalised by transformation us-
ing log10. ANOVA analysis was used to test whether changes
between the treatments were significant (significant P ≤
0.005; and slightly significant P < 0.01).

3. Results

3.1. Saliva Community. The microbial community present
in the pooled saliva used as the inoculum for the CDFF
was analysed using qPCR. The numbers of each of the taxa
analysed are shown in Figure 1. The mean (n = 3) total
number of organisms per millilitre of pooled saliva was
found to be 1.01 (±0.41) × 109 (standard deviation is shown
in brackets). The specific taxa being investigated made up
3.75 × 108 of the organisms or 37.24% of the total. Of these
taxa, the most numerous were V. dispar (22.8%), followed by
N. subflava (12.1%) and F. nucleatum (1.8%), and the least
is L. casei (0.05%). Very low variation was observed between
the three saliva samples which were profiled.

3.2. Gingivitis CDFF Plaque Biofilm Communities. The data
regarding the numbers of individual taxa analysed and the
total number of bacteria present over the course of the
treatment experiments is shown in Table 1.

3.2.1. No Treatment Control (NTC). There was little change
in total numbers of organisms present over time, the num-
bers increased from around 107 at the start to around 108

cells per disk up to 72 hours and remaining at this level
throughout the experiment. Numbers of L. casei, P. inter-
media, and A. naeslundii were very low throughout. Other
taxa increased over time (mainly between the 72 h sampling
point and the 96 h point) by 3 log10, for example, F. nucle-
atum (from 0.007% to 5.399%), V. dispar (from 0.072%
to 13.093%), and N. subflava (from 0.022% to 78.446%).
S. sanguinis increased by 0.5 log10 (0.139% to 0.379%).
S. mutans was not detected at any time points.

3.2.2. Chlorhexidine Treatment (CHX). As with the NTC
exper-iment, the total numbers of organisms remained
broadly steady over the experiment. Numbers of L. casei, and
P. intermedia, and A. naeslundii were found in similar levels
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Figure 1: Numbers of each of the taxa investigated in pooled saliva. Error bars represent the standard deviation (n = 3).

as with the NTC experiment. However, numbers of N. sub-
flava only rose by 1 log10 throughout the experiment (from
3.838% to 10.919%), number of V. dispar and S. sanguinis
remained similar (1.590% to 0.774%; 0.360% to 0.275%,
resp.), and F. nucleatum deceased by around 1 log10 (from
0.026% to 0.001%). S. mutans was not detected at any time
points.

3.2.3. Mushroom Treatment (MUSH). Total numbers of or-
ganisms were found to be around 108 cells per disk for
the duration of the experiment. Numbers of L. casei, P. in-
termedia, and A. naeslundii were very low throughout. How-
ever, numbers of N. subflava rose by 3 log10 (from 0.011%
to 54.374%) throughout the experiment, number of V. dis-
par rose by 6 log10 (0.000002% to 8.556%) throughout the
experiment, and F. nucleatum remained steady (0.00001%
to 0.00009%). S. sanguinis numbers rose by 2 log10 (0.001%
to 1.841%) throughout the experiment. S. mutans was not
detected at any time points.

3.3. Comparison of Taxa Numbers between Treatments. P. in-
termedia, L. casei, and A. naeslundii numbers were found
in low numbers during all three of the treatments with no
significant differences between treatments at any time points.
The numbers of N. subflava cells appeared to be lower
during the CHX treatment from 72 h; however, no significant
difference between treatments was found until the 168 h time
point (NTC, P = 0.010; MUSH, P = 0.004) (Figure 2).
V. dispar cell numbers were found to be significantly lower
during the CHX treatment at 96 h, 120 h, and 168 h (P ≤
0.003, P ≤ 0.021, and P = 0.001, resp.) (Figure 2).

S. sanguinis numbers were significantly higher during the
MUSH treatment than during the CHX treatment at time
points 48, 96, 120, and 168 hours (P = 0.047, P = 0.052,
P = 0.032, and P = 0.021, resp.) (Figure 2). Numbers
of F. nucleatum were found to be significantly lowered by

the MUSH and CHX treatments from 96 hours onwards
(P ≤ 0.030) (Figure 2). Finally, examining the universal assay
cell numbers, the CHX experiment counts are significantly
lower than those in the MUSH experiment at 48, 96, 120, and
168 hours (P = 0.010, P = 0.019, P = 0.044, and P = 0.022,
resp.) (Figure 2).

4. Discussion

4.1. Saliva Community. The bacterial community found in
salivary fluid is composed of the amalgamation of the
communities found around the mouth. The predominant
taxa were found to be V. dispar, N. subflava, F. nucleatum,
A. naeslundii, and S. sanguinis. These taxa have all been
associated with healthy dental plaque biofilms in previous
culture independent studies [29, 30]. The tongue community
in healthy subjects has previously been found to comprise
mostly Streptococcus spp., Veillonella spp., and Actinomyces
spp. [31, 32]. A recent study looking into the unculturable
microbiota of the tongue has also identified the above genera,
along with a Lysobacter-type species as the predominant
organism found on the tongue [33].

Two studies using culture-independent molecular meth-
ods have shown that the dominant phyla most commonly
found in saliva were Firmicutes, Bacteriodetes, Proteobacte-
ria, Actinobacteria, and Fusobacteria, respectively [22, 34].
The multitriplex qPCR method showed a similar picture: the
Firmicutes were the dominant organisms, followed by Pro-
teobacteria, Fusobacteria, Actinobacteria, and Bacteriodetes.

4.2. CDFF Plaque Biofilm Communities. Whilst the universal
assay confirmed total cells numbers in the biofilms to be high
in all of the CDFF experiments, some of the taxa investigated
were only detected in low levels including P. intermedia, L.
casei, S. mutans, and A. naeslundii. While Actinomyces spp.
are known to be one of the early colonizers in the formation
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Table 1: Numbers of each of the taxa investigated in biofilms grown in the gingivitis CDFF over one week under various treatments: Control
(n = 2), Chlorhexidine (n = 4), and LMW mushroom (n = 2) pulsing.

Control

24 h 48 h 72 h 96 h 120 h 144 h 168 h

F. nucleatum
4.68 (±0.71)
× 103

1.38 (±0.11)
× 103

5.39 (±0.41)
× 103

5.07 (±0.05)
× 105

2.99 (±1.82)
× 106

3.31 (±0.87)
× 106

6.26 (±0.30)
× 106

L. casei
6.20 (±4.81)
× 102

7.80 (±4.53)
× 102

7.80 (±4.53)
× 102

8.20 (±9.05)
× 102

9.10 (±9.76)
× 102

9.80 (±9.33)
× 102

9.00 (±10.7)
× 102

V. dispar
4.91 (±4.13)
× 104

2.29 (±2.18)
× 105

2.65 (±1.41)
× 106

7.83 (±3.74)
× 106

8.94 (±7.24)
× 106

8.28 (±3.96)
× 106

1.52 (±0.26)
× 107

N. subflava
1.52 (±0.72)
× 104

2.43 (±1.80)
× 105

2.49 (±1.70)
× 107

3.69 (±1.79)
× 107

6.49 (±5.97)
× 107

5.51 (±4.14)
× 107

9.10 (±3.74)
× 107

A. naeslundii
6.00 (±8.49)
× 101

4.00 (±5.66)
× 101

1.00 (±1.41)
× 101

2.80 (±1.70)
× 102

1.60 (±0.28)
× 102

1.40 (±0.57)
× 102

2.40 (±3.11)
× 102

P. intermedia
5.00 (±1.41)
× 101

5.00 (±1.41)
× 101

6.00 (±0.00)
× 101

4.00 (±2.83)
× 101

4.00 (±2.83)
× 101

3.00 (±1.41)
× 101

5.00 (±1.41)
× 101

S. sanguinis
9.49 (±1.65)
× 104

8.05 (±1.41)
× 104

1.39 (±0.59)
× 106

5.63 (±0.99)
× 105

3.15 (±1.63)
× 105

5.18 (±3.05)
× 105

4.40 (±1.71)
× 105

Universal
6.81 (±2.59)
× 107

3.48 (±2.22)
× 107

1.56 (±1.02)
× 108

1.72 (±1.08)
× 108

1.51 (±1.28)
× 108

1.30 (±0.83)
× 108

1.61 (±0.01)
× 108

Chlorhexidine

24 h 48 h 72 h 96 h 120 h 144 h 168 h

F. nucleatum
5.28 (±8.28)
× 103

8.25 (±9.77)
× 102

2.05 (±4.10)
× 102

6.40 (±7.18)
× 102

6.00 (±6.37)
× 102

2.80 (±5.20)
× 102

5.05 (±4.71)
× 102

L. casei
3.60 (±5.80)
× 102

2.60 (±3.81)
× 102

6.50 (±13.0)
× 101

3.20 (±5.13)
× 102

2.60 (±3.59)
× 102

6.00 (±10.7)
× 101

3.15 (±3.00)
× 102

V. dispar
3.28 (±5.02)
× 105

4.05 (±5.69)
× 105

3.53 (±3.35)
× 105

4.86 (±2.24)
× 105

2.08 (±1.93)
× 105

7.02 (±7.24)
× 105

5.65 (±2.77)
× 105

N. subflava
7.91 (±10.0)
× 105

5.98 (±8.67)
× 105

4.80 (±4.91)
× 106

9.34 (±12.1)
× 106

6.95 (±7.91)
× 106

1.08 (±1.21)
× 107

7.97 (±4.94)
× 106

A. naeslundii
3.88 (±3.47)
× 101

1.15 (±1.92)
× 101

0.00 (±0.00)
× 100

1.50 (±3.00)
× 101

1.00 (±2.00)
× 101

1.50 (±3.00)
× 101

9.75 (±12.1)
× 100

P. intermedia
4.00 (±4.90)
× 101

4.00 (±4.32)
× 101

2.50 (±3.79)
× 101

5.50 (±5.26)
× 101

4.50 (±4.43)
× 101

2.00 (±2.83)
× 101

3.50 (±3.00)
× 101

S. sanguinis
7.41 (±8.43)
× 104

2.25 (±2.39)
× 104

5.75 (±6.38)
× 104

1.39 (±1.52)
× 105

7.38 (±7.62)
× 104

9.35 (±10.3)
× 104

2.01 (±1.69)
× 105

Universal
2.06 (±2.57)
× 107

1.49 (±0.47)
× 107

2.99 (±2.57)
× 107

5.01 (±1.91)
× 107

4.33 (±2.17)
× 107

6.75 (±4.92)
× 107

7.30 (±2.85)
× 107

LMW mushroom

24 h 48 h 72 h 96 h 120 h 144 h 168 h

F. nucleatum
3.30 (±3.82)
× 102

5.40 (±2.26)
× 102

3.40 (±3.68)
× 102

3.10 (±2.12)
× 102

6.60 (±9.33)
× 102

3.40 (±3.96)
× 102

2.40 (±3.11)
× 102

L. casei
1.05 (±1.34)
× 101

5.10 (±3.54)
× 102

1.90 (±1.27)
× 102

5.00 (±7.07)
× 101

5.00 (±7.07)
× 101

7.00 (±9.90)
× 101

5.00 (±7.07)
× 10−1

V. dispar
8.05 (±11.2)
× 101

1.32 (±0.29)
× 104

6.73 (±0.05)
× 106

6.92 (±2.18)
× 106

1.46 (±0.65)
× 107

2.43 (±1.19)
× 107

2.35 (±1.09)
× 107

N. subflava
4.86 (±1.78)
× 105

2.20 (±1.40)
× 107

5.39 (±2.25)
× 107

7.10 (±3.29)
× 107

1.26 (±0.65)
× 108

1.40 (±0.83)
× 108

1.50 (±0.50)
× 108

A. naeslundii
0.00 (±0.00)
× 100

2.00 (±2.83)
× 101

2.20 (±0.57)
× 102

3.00 (±1.41)
× 101

0.00 (±0.00)
× 100

0.00 (±0.00)
× 100

0.00 (±0.00)
× 100

P. intermedia
1.00 (±1.41)
× 101

1.00 (±1.41)
× 101

1.00 (±1.41)
× 101

2.00 (±2.83)
× 101

3.00 (±4.24)
× 101

1.00 (±1.41)
× 101

2.00 (±2.83)
× 101

S. sanguinis
5.99 (±4.29)
× 104

8.67 (±3.87)
× 105

3.72 (±0.76)
× 106

6.36 (±2.07)
× 106

6.55 (±1.97)
× 106

5.99 (±2.97)
× 106

5.06 (±1.58)
× 106

Universal
4.60 (±2.56)
× 107

8.96 (±1.11)
× 107

1.98 (±0.69)
× 108

2.88 (±0.39)
× 108

3.80 (±1.04)
× 108

3.25 (±0.12)
× 108

2.75 (±0.59)
× 108
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Figure 2: F. nucleatum, N. subflava, S. sanguinis, V. dispar, and total bacterial cell numbers which displayed significant differences between
the different treatments.

of dental plaque [35], A. naeslundii is only one species
representative of this genus. It is likely that the environmental
conditions within the CDFF experiments were not optimal
for the above taxon, but other members of the genus may
have been present. Previous studies have found that L. casei,
S. mutans, and A. naeslundii all grow well in biofilms cultured

using saliva and the addition of a carbohydrate such as
glucose or sucrose [22, 36]. The lack of glucose or sucrose
in the culture media in the present study could account for
the low detection rates of these organisms. A previous study
has shown that Prevotella spp. were detectable in the CDFF
inoculum but not during the duration of the experiment
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using molecular methods [37], supporting the data from the
current study where the pathogen was detected at very low
levels throughout.

The organisms found in consistently high numbers from
the beginning of all of the experiments were N. subflava,
S. sanguinis, and V. dispar. All of these organisms have been
shown to be early colonizers during the formation of dental
plaque as well as being among the most abundant taxa in
the oral cavity [34, 35, 38]. F. nucleatum numbers increased
at a slightly later stage of plaque biofilm formation once
the environmental conditions were optimal [39], as seen in
the NTC experiment designed to mimic conditions during
gingivitis.

Gingivitis is caused by the buildup of the plaque biofilm
at the gingival margin, which in turn results in a shift in
the resident microbiota as a consequence of environmental
changes [4, 5]. The prevalence of Actinomyces spp., Lac-
tobacillus spp., Prevotella spp., and F. nucleatum is known
to increase during gingivitis at the expense of Streptococcus
spp. [6, 7, 9]. It was apparent that numbers of F. nucleatum
rose over time in the NTC experiment and that S. sanguinis
numbers declined after an initial peak at 72 h coinciding with
the F. nucleatum increase.

Looking at the treatment effects, the application of chlo-
rhexidine significantly lowered the numbers of N. subflava,
V. dispar, and F. nucleatum compared to NTC The total cell
numbers were also lower during the CHX treatment, no
doubt in part due to the lower numbers of the above taxa.
Chlorhexidine is considered the gold standard [24] in the
treatment of gum disease, and its action has been well stud-
ied. Previous studies looking at the effects of chlorhexidine
on plaque biofilms in vitro have shown an effect on Veillonella
sp., Fusobacterium sp., and Streptococcus sp. numbers [22,
25], supported by the current study. The MUSH treatment
significantly lowered the numbers of F. nucleatum, an oral
pathogen, but also resulted in significantly higher numbers
of S. sanguinis, normally associated with oral health, when
compared to the CHX treatment. This increase in S. sanguinis
numbers despite the gingivitis conditions in the CDFF is
an important effect. Furthermore, the MUSH treatment did
not have a negative effect on N. subflava and V. dispar, both
organisms associated with oral health [34, 38]. The data
presented in the current study are supported by previous
research which demonstrated the antimicrobial effects of
shiitake mushroom products on a number of Gram-positive
and negative organisms including some oral pathogens [17,
40, 41].

In conclusion, the comparison of the different treatments
using the CDFF has given a valuable insight into the com-
munity dynamics of dental plaque as well as an indication
of the efficacy of the treatments. Chlorhexidine was found
to be effective at lowering a number of taxa, associated with
both health and disease; however, shiitake mushroom extract
was shown to be effective at reducing the numbers of the oral
pathogen F. nucleatum, while having little effect on some of
the taxa associated with health. The results imply that the
action of shiitake mushroom extract should be investigated
further for its beneficial effects on oral health.
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