137 research outputs found

    Study of the pd→3HeK+K−pd\to ^3\textrm{He} K^+K^- and pd→3Heϕpd\to ^3\textrm{He} \phi reactions close to threshold

    Full text link
    Two--kaon production in proton--deuteron collisions has been studied at three energies close to threshold using a calibrated magnetic spectrograph to measure the final 3^3He and a vertex detector to measure the K+K−K^+K^- pair. Differential and total cross sections are presented for the production of ϕ\phi--mesons, decaying through ϕ→K+K−\phi\to K^+K^-, as well as for prompt K+K−K^+K^- production. The prompt production seems to follow phase space in both its differential distributions and in its energy dependence. The amplitude for the pd→3pd\to ^3{He}ϕ \phi reaction varies little for excess energies below 22 MeV and the value is consistent with that obtained from a threshold measurement. The angular distribution of the K+K−K^+K^- decay pair shows that near threshold the ϕ\phi--mesons are dominantly produced with polarization m=0m=0 along the initial proton direction. No conclusive evidence for f0(980)f_0(980) production is found in the data.Comment: 13 figure

    Experimental study of the pd(d p) → 3 He ππ reactions close to threshold

    Get PDF
    New experimental data on the pd → 3 He π+π− reaction obtained with the COSY-MOMO detector below the three-pion threshold are presented. The reaction was also studied in inverse kinematics with a deuteron beam and the higher counting rates achieved were especially important at low excess energies. The comparison of these data with inclusive pd → 3 He X0 rates allowed estimates also to be made of π0π0 production. The results confirm our earlier findings that, close to threshold, there is no enhancement at low excitation energies in the π+π− system, where the data seem largely suppressed compared with phase space. Possible explanations for this behavior, such as strong p waves in the π+π− system or the influence of two-step processes, are explored

    Migration control: A distance compensation strategy in ants

    Get PDF
    ©The Author(s) 2016. This article is published with open access at Springerlink.com. Migratory behaviour forms an intrinsic part of the life histories of many organisms but is often a high-risk process. Consequently, varied strategies have evolved to negate such risks, but empirical data relating to their functioning are limited. In this study, we use the model system of the househunting ant Temnothorax albipennis to demonstrate a key strategy that can shorten migration exposure times in a group of social insects. Colonies of these ants frequently migrate to new nest sites, and due to the nature of their habitat, the distances over which they do so are variable, leading to fluctuating potential costs dependent on migration parameters. We show that colonies of this species facultatively alter the dynamics of a migration and so compensate for the distance over which a given migration occurs. Specifically, they achieve this by modulating the rate of ‘tandem running’, in which workers teach each other the route to a new nest site. Using this method, colonies are able to engage a larger number of individuals in the migration process when the distance to be traversed is greater, and furthermore, the system appears to be based on perceived encounter rate at the individual level. This form of decentralised control highlights the adaptive nature of a behaviour of ecological importance, and indicates that the key to its robustness lies in the use of simple rules. Additionally, our results suggest that such coordinated group reactions are central to achieving the high levels of ecological success seen in many eusocial organisms

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    STXM goes 3D: Digital reconstruction of focal stacks as novel approach towards confocal soft x-ray microscopy

    No full text
    Fresnel zone plate based soft x-ray transmission microspectroscopy has developed into a routine technique for high-resolution elemental or chemical 2D imaging of thin film specimens. The availability of high resolution Fresnel lenses with short depth of focus offers the possibility of optical slicing (in the third dimension) by focus series with resolutions in the submicron regime. We introduce a 3D reconstruction algorithm that uses a variance-based metric to assign a focus measure as basis for volume rendering. The algorithm is applied to simulated geometries and opaque soft matter specimens thus enabling 3D visualization. These studies with z-resolution of few 100 nm serve as important step towards the vision of a confocal transmission x-ray microscope
    • …
    corecore