376 research outputs found

    Reactive Oxygen Species Stimulate Insulin Secretion in Rat Pancreatic Islets: Studies Using Mono-Oleoyl-Glycerol

    Get PDF
    Chronic exposure (24–72 hrs) of pancreatic islets to elevated glucose and fatty acid leads to glucolipoxicity characterized by basal insulin hypersecretion and impaired glucose-stimulated insulin secretion (GSIS). Our aim was to determine the mechanism for basal hypersecretion of insulin. We used mono-oleoyl-glycerol (MOG) as a tool to rapidly increase lipids in isolated rat pancreatic ß-cells and in the clonal pancreatic ß-cell line INS-1 832/13. MOG (25–400 µM) stimulated basal insulin secretion from ß-cells in a concentration dependent manner without increasing intracellular Ca2+ or O2 consumption. Like GSIS, MOG increased NAD(P)H and reactive oxygen species (ROS). The mitochondrial reductant ß-hydroxybutyrate (ß-OHB) also increased the redox state and ROS production, while ROS scavengers abrogated secretion. Diazoxide (0.4 mM) did not prevent the stimulatory effect of MOG, confirming that the effect was independent of the KATP-dependent pathway of secretion. MOG was metabolized to glycerol and long-chain acyl-CoA (LC-CoA), whereas, acute oleate did not similarly increase LC-CoA. Inhibition of diacylglycerol kinase (DGK) did not mimic the effect of MOG on insulin secretion, indicating that MOG did not act primarily by inhibiting DGK. Inhibition of acyl-CoA synthetase (ACS) reduced the stimulatory effect of MOG on basal insulin secretion by 30% indicating a role for LC-CoA. These data suggest that basal insulin secretion is stimulated by increased ROS production, due to an increase in the mitochondrial redox state independent of the established components of GSIS

    Reactive Oxygen Species Stimulate Insulin Secretion in Rat Pancreatic Islets: Studies Using Mono-Oleoyl-Glycerol

    Get PDF
    Chronic exposure (24–72 hrs) of pancreatic islets to elevated glucose and fatty acid leads to glucolipoxicity characterized by basal insulin hypersecretion and impaired glucose-stimulated insulin secretion (GSIS). Our aim was to determine the mechanism for basal hypersecretion of insulin. We used mono-oleoyl-glycerol (MOG) as a tool to rapidly increase lipids in isolated rat pancreatic ß-cells and in the clonal pancreatic ß-cell line INS-1 832/13. MOG (25–400 µM) stimulated basal insulin secretion from ß-cells in a concentration dependent manner without increasing intracellular Ca2+ or O2 consumption. Like GSIS, MOG increased NAD(P)H and reactive oxygen species (ROS). The mitochondrial reductant ß-hydroxybutyrate (ß-OHB) also increased the redox state and ROS production, while ROS scavengers abrogated secretion. Diazoxide (0.4 mM) did not prevent the stimulatory effect of MOG, confirming that the effect was independent of the KATP-dependent pathway of secretion. MOG was metabolized to glycerol and long-chain acyl-CoA (LC-CoA), whereas, acute oleate did not similarly increase LC-CoA. Inhibition of diacylglycerol kinase (DGK) did not mimic the effect of MOG on insulin secretion, indicating that MOG did not act primarily by inhibiting DGK. Inhibition of acyl-CoA synthetase (ACS) reduced the stimulatory effect of MOG on basal insulin secretion by 30% indicating a role for LC-CoA. These data suggest that basal insulin secretion is stimulated by increased ROS production, due to an increase in the mitochondrial redox state independent of the established components of GSIS

    Transcriptional profiles of genes related to electrophysiological function in Scn5a+/− murine hearts

    Get PDF
    The Scn5a gene encodes the major pore-forming Nav1.5 (α) subunit, of the voltage-gated Na+ channel in cardiomyocytes. The key role of Nav1.5 in action potential initiation and propagation in both atria and ventricles predisposes organisms lacking Scn5a or carrying Scn5a mutations to cardiac arrhythmogenesis. Loss-of-function Nav1.5 genetic abnormalities account for many cases of the human arrhythmic disorder Brugada syndrome (BrS) and related conduction disorders. A murine model with a heterozygous Scn5a deletion recapitulates many electrophysiological phenotypes of BrS. This study examines the relationships between its Scn5a+/− genotype, resulting transcriptional changes, and the consequent phenotypic presentations of BrS. Of 62 selected protein-coding genes related to cardiomyocyte electrophysiological or homeostatic function, concentrations of mRNA transcribed from 15 differed significantly from wild type (WT). Despite halving apparent ventricular Scn5a transcription heterozygous deletion did not significantly downregulate its atrial expression, raising possibilities of atria-specific feedback mechanisms. Most of the remaining 14 genes whose expression differed significantly between WT and Scn5a+/− animals involved Ca2+ homeostasis specifically in atrial tissue, with no overlap with any ventricular changes. All statistically significant changes in expression were upregulations in the atria and downregulations in the ventricles. This investigation demonstrates the value of future experiments exploring for and clarifying links between transcriptional control of Scn5a and of genes whose protein products coordinate Ca2+ regulation and examining their possible roles in BrS

    Transcriptional profiles of genes related to electrophysiological function in Scn5a+/- murine hearts.

    Get PDF
    The Scn5a gene encodes the major pore-forming Nav 1.5 (α) subunit, of the voltage-gated Na+ channel in cardiomyocytes. The key role of Nav 1.5 in action potential initiation and propagation in both atria and ventricles predisposes organisms lacking Scn5a or carrying Scn5a mutations to cardiac arrhythmogenesis. Loss-of-function Nav 1.5 genetic abnormalities account for many cases of the human arrhythmic disorder Brugada syndrome (BrS) and related conduction disorders. A murine model with a heterozygous Scn5a deletion recapitulates many electrophysiological phenotypes of BrS. This study examines the relationships between its Scn5a+/- genotype, resulting transcriptional changes, and the consequent phenotypic presentations of BrS. Of 62 selected protein-coding genes related to cardiomyocyte electrophysiological or homeostatic function, concentrations of mRNA transcribed from 15 differed significantly from wild type (WT). Despite halving apparent ventricular Scn5a transcription heterozygous deletion did not significantly downregulate its atrial expression, raising possibilities of atria-specific feedback mechanisms. Most of the remaining 14 genes whose expression differed significantly between WT and Scn5a+/- animals involved Ca2+ homeostasis specifically in atrial tissue, with no overlap with any ventricular changes. All statistically significant changes in expression were upregulations in the atria and downregulations in the ventricles. This investigation demonstrates the value of future experiments exploring for and clarifying links between transcriptional control of Scn5a and of genes whose protein products coordinate Ca2+ regulation and examining their possible roles in BrS

    Flupirtine Derivatives as Potential Treatment for the Neuronal Ceroid Lipofuscinoses

    Get PDF
    OBJECTIVE: Neuronal Ceroid Lipofuscinoses (NCL) are fatal inherited neurodegenerative diseases with established neuronal cell death and increased ceramide levels in brain, hence, a need for disease-modifying drug candidates, with potential to enhance growth, reduce apoptosis and lower ceramide in neuronal precursor PC12 cells and human NCL cell lines using enhanced flupirtine aromatic carbamate derivatives in vitro. METHODS: Aromatic carbamate derivatives were tested by establishing growth curves under pro-apoptotic conditions and activity evaluated by trypan blue and JC-1 staining, as well as a drop in pro-apoptotic ceramide in neuronal precursor PC12 cells following siRNA knockdown of the RESULTS: Retigabine, the benzyl-derivatized carbamate and an allyl carbamate derivative were neuroprotective in CLN3-defective PC12 cells and rescued CLN1-/CLN2-/CLN3-/CLN6-/CLN8 patient-derived lymphoblasts from diminished growth and accelerated apoptosis. All drugs decreased ceramide in CLN1-/CLN2-/CLN3-/CLN6-/CLN8 patient-derived lymphoblasts. Increased INTERPRETATION: These findings establish that compounds analogous to flupirtine demonstrate anti-apoptotic activity with potential for treatment of NCL disease and use of ceramide as a marker for these diseases

    Prevalence and association of asthma and allergic sensitization with dietary factors in schoolchildren: data from the french six cities study

    No full text
    International audienceBackground: The prevalence of asthma and allergy has recently risen among children. This increase in prevalence might be related to various factors, particularly diet. The aim of this study is to assess the prevalence and association of asthma and allergic sensitization with dietary factors in the French Six Cities Study. Methods: Cross-sectional studies were performed among 7432 schoolchildren aged 9-11 years in Bordeaux, Clermont-Ferrand, Creteil, Marseille, Reims, and Strasbourg. Parental questionnaires, based on the International Study on Asthma and Allergies in Childhood (ISAAC), were used to collect information on allergic diseases and potential exposure factors including a food frequency questionnaire to evaluate dietary habits. Skin prick testing to common allergens for allergic sensitization and bronchial hyper-responsiveness (BHR) testing to exercise were performed. Confounders control was performed with multiple logistic regressions. Results: Asthma symptoms, asthma and allergic sensitization were more prevalent in boys than in girls and were more prevalent in the South than in the North of France. After adjustment for confounders, fruit juice intake was associated with a low prevalence of lifetime asthma (ORa [95 % CI]; 0.73 [0.56-0.97]), butter intake was positively associated with atopic wheeze (1.48 [1.07-2.05]) and having lunch at the canteen 1-2 times/week compared to never or occasionally was associated with a lower prevalence of past year wheeze (0.71 [0.52-0.96]), lifetime asthma (0.76 [0.60-0.96]) and allergic sensitization (0.80 [0.67-0.95]). Meat intake was inversely related to past year wheeze among atopic children (0.68 [0.50-0.98]) while fast food consumption and butter intake were associated with an increase prevalence of asthma (2.39 [1.47-3.93] and 1.51 [1.17-2.00] respectively). Fish intake was associated with a lower prevalence of asthma among non-atopic children (0.61 [0.43-0.87]. None of the dietary factors was associated with BHR. Conclusions: Diet is associated with wheeze, asthma and allergic sensitization but not with BHR in children. These results provide further evidence that adherence to a healthy diet including fruits, meat and fish seems to have a protective effect on asthma and allergy in childhood. However, prospective and experimental studies are needed to provide causal evidence concerning the effect of diet on asthma and atopy

    The diagnostic value of liver biopsy

    Get PDF
    BACKGROUND: Since the introduction of molecular diagnostic tools such as markers for hepatitis C and different autoimmune diseases, liver biopsy is thought to be useful mainly for staging but not for diagnostic purposes. The aim was to review the liver biopsies for 5 years after introduction of testing for hepatitis C, in order to evaluate what diagnostic insights – if any – remain after serologic testing. METHODS: Retrospective review of all liver biopsies performed between 1.1.1995 and 31.12.1999 at an academic outpatient hepatology department. The diagnoses suspected in the biopsy note were compared with the final diagnosis arrived at during a joint meeting with the responsible clinicians and a hepatopathologist. RESULTS: In 365 patients, 411 diagnoses were carried out before biopsy. 84.4 % were confirmed by biopsy but in 8.8 %, 6.8 % and 10.5 % the diagnosis was specified, changed or a diagnosis added, respectively. Additional diagnoses of clinical relevance were unrecognized biliary obstruction and additional alcoholic liver disease in patients with chronic hepatitis C. Liver biopsy led to change in management for 12.1 % of patients. CONCLUSION: Even in the era of advanced virological, immunological and molecular genetic testing, liver biopsy remains a useful diagnostic tool. The yield is particularly high in marker negative patients but also in patients with a clear-cut prebiopsy diagnosis, liver biopsy can lead to changes in patient management

    Pathology-related changes in cardiac energy metabolites, inflammatory response and reperfusion injury following cardioplegic arrest in patients undergoing open-heart surgery

    Get PDF
    IntroductionChanges in cardiac metabolites in adult patients undergoing open-heart surgery using ischemic cardioplegic arrest have largely been reported for non-ventricular tissue or diseased left ventricular tissue, with few studies attempting to assess such changes in both ventricular chambers. It is also unknown whether such changes are altered in different pathologies or linked to the degree of reperfusion injury and inflammatory response. The aim of the present work was to address these issues by monitoring myocardial metabolites in both ventricles and to establish whether these changes are linked to reperfusion injury and inflammatory/stress response in patients undergoing surgery using cold blood cardioplegia for either coronary artery bypass graft (CABG, n = 25) or aortic valve replacement (AVR, n = 16).MethodsVentricular biopsies from both left (LV) and right (RV) ventricles were collected before ischemic cardioplegic arrest and 20 min after reperfusion. The biopsies were processed for measuring selected metabolites (adenine nucleotides, purines, and amino acids) using HPLC. Blood markers of cardiac injury (Troponin I, cTnI), inflammation (IL- 6, IL-8, Il-10, and TNFα, measured using Multiplex) and oxidative stress (Myeloperoxidase, MPO) were measured pre- and up to 72 hours post-operatively.ResultsThe CABG group had a significantly shorter ischemic cardioplegic arrest time (38.6 ± 2.3 min) compared to AVR group (63.0 ± 4.9 min, p = 2 x 10−6). Cardiac injury (cTnI release) was similar for both CABG and AVR groups. The inflammatory markers IL-6 and Il-8 were significantly higher in CABG patients compared to AVR patients. Metabolic markers of cardiac ischemic stress were relatively and significantly more altered in the LV of CABG patients. Comparing diabetic and non-diabetic CABG patients shows that only the RV of diabetic patients sustained major ischemic stress during reperfusion and that diabetic patients had a significantly higher inflammatory response.DiscussionCABG patients sustain relatively more ischemic stress, systemic inflammatory response and similar injury and oxidative stress compared to AVR patients despite having significantly shorter cross-clamp time. The higher inflammatory response in CABG patients appears to be at least partly driven by a higher incidence of diabetes amongst CABG patients. In addition to pathology, the use of cold blood cardioplegic arrest may underlie these differences
    corecore