4,446 research outputs found

    Unveiling the Nature of the High Energy Source IGR J19140+0951

    Full text link
    We report on high energy observations of IGR J19140+0951 performed with RXTE on three occasions in 2002, 2003 and 2004, and INTEGRAL during a very well sampled and unprecedented high energy coverage of this source from early-March to mid-May 2003. Our analysis shows that IGR J19140+0951 spends most of its time in a very low luminosity state, probably corresponding to the state observed with RXTE, and characterised by thermal Comptonisation. In some occasions we observe variations of the luminosity by a factor of about 10 during which the spectrum can show evidence for a thermal component, besides thermal Comptonisation by a hotter plasma than during the low luminosity state. The spectral parameters obtained from the spectral fits to the INTEGRAL and RXTE data strongly suggest that IGR J19140+0951 hosts a neutron star rather than a black hole. Very importantly, we observe variations of the absorption column density (with a value as high as ~10^23 cm^-2). Our spectral analysis also reveals a bright iron line detected with both RXTE/PCA and INTEGRAL/JEM-X, at different levels of luminosity. We discuss these results and the behaviour of IGR J19140+0951, and show, by comparison with other well known systems (Vela X-1, GX 301-2, 4U 2206+54), that IGR J19140+0951 is most probably a High Mass X-ray Binary.Comment: Accepted for publication in Astronomy and Astrophysics. 13 pages, 6 figure

    Multi-wavelength INTEGRAL NEtwork (MINE) observations of the microquasar GRS 1915+105

    Full text link
    We present the international collaboration MINE (Multi-lambda Integral NEtwork) aimed at conducting multi-wavelength observations of X-ray binaries and microquasars simultaneously with the INTEGRAL gamma-ray satellite. We will focus on the 2003 March-April campaign of observations of the peculiar microquasar GRS 1915+105 gathering radio, IR and X-ray data. The source was observed 3 times in the plateau state, before and after a major radio and X-ray flare. It showed strong steady optically thick radio emission corresponding to powerful compact jets resolved in the radio images, bright near-infrared emission, a strong QPO at 2.5 Hz in the X-rays and a power law dominated spectrum without cutoff in the 3-300 keV range. We compare the different observations, their multi-wavelength light curves, including JEM-X, ISGRI and SPI, and the parameters deduced from fitting the spectra obtained with these instruments on board INTEGRAL.Comment: 4 pages, 9 fig., Proc. of the 5th INTEGRAL Workshop (Feb. 16-20 2004), to be published by ES

    Simultaneous multi-wavelength observations of microquasars (the MINE collaboration)

    Full text link
    We present the international collaboration MINE (Multi-lambda INTEGRAL NEtwork) aimed at conducting multi-wavelength observations of microquasars simultaneously with the INTEGRAL satellite. The first results on GRS 1915+105 are encouraging and those to come should help us to understand the physics of the accretion and ejection phenomena around a compact object.Comment: 2 p, 3 fig., proc. of the IAU Coll. 194, ``Compact Binaries in the Galaxy and Beyond'', Nov. 2003, La Paz, Mexico, to be published in the Conf. Series of Revista Mexicana de Astronomia y Astrofisica, Eds. G. Tovmassian & E. Sio

    Characterizing a new class of variability in GRS 1915+105 with simultaneous INTEGRAL/RXTE observations

    Full text link
    We report on the analysis of 100 ks INTEGRAL observations of the Galactic microquasar GRS 1915+105. We focus on INTEGRAL Revolution number 48 when the source was found to exhibit a new type of variability as preliminarily reported in Hannikainen et al. (2003). The variability pattern, which we name ξ\xi, is characterized by a pulsing behaviour, consisting of a main pulse and a shorter, softer, and smaller amplitude precursor pulse, on a timescale of 5 minutes in the JEM-X 3-35 keV lightcurve. We also present simultaneous RXTE data. From a study of the individual RXTE/PCA pulse profiles we find that the rising phase is shorter and harder than the declining phase, which is opposite to what has been observed in other otherwise similar variability classes in this source. The position in the colour-colour diagram throughout the revolution corresponds to State A (Belloni et al. 2000) but not to any previously known variability class. We separated the INTEGRAL data into two subsets covering the maxima and minima of the pulses and fitted the resulting two broadband spectra with a hybrid thermal--non-thermal Comptonization model. The fits show the source to be in a soft state characterized by a strong disc component below ~6 keV and Comptonization by both thermal and non-thermal electrons at higher energies.Comment: Accepted for publication in A&A. 11 pages, 10 figures, 4 in colour. Original figures can be found at http://www.astro.helsinki.fi/~diana/grs1915_rev48. Author affiliations correcte

    Optical properties of quantum wires: Disorder-scattering in the Lloyd-model

    Full text link
    The Lloyd model is extended to the exciton problem in quasi one-dimensional structures to study the interplay between the Coulomb attraction and disorder scattering. Within this model the averaging and resummation of the locator series can be performed analytically. As an application, the optical absorption in quantum box wires is investigated. Without electron-hole interaction, fluctuations in the well-width lead to an asymmetric broadening of the minibands with respect to the lower and upper band-edges.Comment: 7 pages, 6 figure

    Simultaneous multi-wavelength observations of GRS 1915+105

    Full text link
    We present the result of multi-wavelength observations of the microquasar GRS 1915+105 in a plateau state with a luminosity of ~7.5x10^{38) erg s-1 (~40% L_Edd), conducted simultaneously with the INTEGRAL and RXTE satellites, the ESO/NTT, the Ryle Telescope, the NRAO VLA and VLBA, in 2003 April 2-3. For the first time were observed concurrently in GRS 1915+105 all of the following properties: a strong steady optically thick radio emission corresponding to a powerful compact jet resolved with the VLBA, bright near-IR emission, a strong QPO at 2.5 Hz in the X-rays and a power law dominated spectrum without any cutoff in the 3-400 keV range.Comment: 5 pages, 5 figures (4 colour figures), accepted by A&A Letter
    corecore