2,235 research outputs found
Study of Lyndon B. Johnson Space Center utility systems
The results of an engineering study of potential energy saving utility system modifications for the NASA Lyndon B. Johnson Space Center are presented. The objective of the study was to define and analyze utility options that would provide facility energy savings in addition to the approximately 25 percent already achieved through an energy loads reduction program. A systems engineering approach was used to determine total system energy and cost savings resulting from each of the ten major options investigated. The results reported include detailed cost analyses and cost comparisons of various options. Cost are projected to the year 2000. Also included are a brief description of a mathematical model used for the analysis and the rationale used for a site survey to select buildings suitable for analysis
MIUS integration and subsystems test program
The MIUS Integration and Subsystems Test (MIST) facility at the Lyndon B. Johnson Space Center was completed and ready in May 1974 for conducting specific tests in direct support of the Modular Integrated Utility System (MIUS). A series of subsystems and integrated tests was conducted since that time, culminating in a series of 24-hour dynamic tests to further demonstrate the capabilities of the MIUS Program concepts to meet typical utility load profiles for a residential area. Results of the MIST Program are presented which achieved demonstrated plant thermal efficiencies ranging from 57 to 65 percent
General MACOS Interface for Modeling and Analysis for Controlled Optical Systems
The General MACOS Interface (GMI) for Modeling and Analysis for Controlled Optical Systems (MACOS) enables the use of MATLAB as a front-end for JPL s critical optical modeling package, MACOS. MACOS is JPL s in-house optical modeling software, which has proven to be a superb tool for advanced systems engineering of optical systems. GMI, coupled with MACOS, allows for seamless interfacing with modeling tools from other disciplines to make possible integration of dynamics, structures, and thermal models with the addition of control systems for deformable optics and other actuated optics. This software package is designed as a tool for analysts to quickly and easily use MACOS without needing to be an expert at programming MACOS. The strength of MACOS is its ability to interface with various modeling/development platforms, allowing evaluation of system performance with thermal, mechanical, and optical modeling parameter variations. GMI provides an improved means for accessing selected key MACOS functionalities. The main objective of GMI is to marry the vast mathematical and graphical capabilities of MATLAB with the powerful optical analysis engine of MACOS, thereby providing a useful tool to anyone who can program in MATLAB. GMI also improves modeling efficiency by eliminating the need to write an interface function for each task/project, reducing error sources, speeding up user/modeling tasks, and making MACOS well suited for fast prototyping
Recommended from our members
Fast Sensing of Double-Dot Charge Arrangement and Spin State with a Radio-Frequency Sensor Quantum Dot
Single-shot measurement of the charge arrangement and spin state of a double quantum dot are reported with measurement times down to 100 ns. Sensing uses radio-frequency reflectometry of a proximal quantum dot in the Coulomb blockade regime. The sensor quantum dot is up to 30 times more sensitive than a comparable quantum point-contact sensor and yields three times greater signal to noise in rf single-shot measurements. Numerical modeling is qualitatively consistent with experiment and shows that the improved sensitivity of the sensor quantum dot results from reduced lifetime broadening and screening.PhysicsOther Research Uni
Dispersed Fringe Sensing Analysis - DFSA
Dispersed Fringe Sensing (DFS) is a technique for measuring and phasing segmented telescope mirrors using a dispersed broadband light image. DFS is capable of breaking the monochromatic light ambiguity, measuring absolute piston errors between segments of large segmented primary mirrors to tens of nanometers accuracy over a range of 100 micrometers or more. The DFSA software tool analyzes DFS images to extract DFS encoded segment piston errors, which can be used to measure piston distances between primary mirror segments of ground and space telescopes. This information is necessary to control mirror segments to establish a smooth, continuous primary figure needed to achieve high optical quality. The DFSA tool is versatile, allowing precise piston measurements from a variety of different optical configurations. DFSA technology may be used for measuring wavefront pistons from sub-apertures defined by adjacent segments (such as Keck Telescope), or from separated sub-apertures used for testing large optical systems (such as sub-aperture wavefront testing for large primary mirrors using auto-collimating flats). An experimental demonstration of the coarse-phasing technology with verification of DFSA was performed at the Keck Telescope. DFSA includes image processing, wavelength and source spectral calibration, fringe extraction line determination, dispersed fringe analysis, and wavefront piston sign determination. The code is robust against internal optical system aberrations and against spectral variations of the source. In addition to the DFSA tool, the software package contains a simple but sophisticated MATLAB model to generate dispersed fringe images of optical system configurations in order to quickly estimate the coarse phasing performance given the optical and operational design requirements. Combining MATLAB (a high-level language and interactive environment developed by MathWorks), MACOS (JPL s software package for Modeling and Analysis for Controlled Optical Systems), and DFSA provides a unique optical development, modeling and analysis package to study current and future approaches to coarse phasing controlled segmented optical systems
CREATING SPECIAL OPERATIONS FORCES' ORGANIC SMALL UNMANNED AIRCRAFT SYSTEM OF THE FUTURE
Emerging observations of the Ukrainian conflict reinforce standing assumptions that the future’s multidomain operational environment in which U.S. special operations forces (SOF) will deploy will be characterized by rapid, continuous advancements in intelligence, surveillance, and reconnaissance (ISR) technologies. The Department of Defense’s inability to develop and field innovative weapons and technical systems at the rate of its peer and near-peer competitors invites great risks to both its military members and its national security. One critical deficiency that U.S. SOF must address immediately is its use of artificial intelligence and machine learning in a small unmanned aircraft system (sUAS). We can no longer assume that we will achieve the air superiority or air parity that have enabled the persistent presence of theater-level assets to support military elements in contested and denied areas. This thesis focuses on enhancing U.S. SOF force protection and situational awareness by combining a cutting-edge sUAS with object recognition software to create an organic ISR capability. Following several field experiments in partnership with private industries to test and refine object recognition software when combined with a sUAS, our results strongly suggest that integrating object recognition capabilities into a SOF element’s organic sUAS can achieve the performance parameters necessary to fill the current gap in U.S. SOF force protection and ISR requirements.SOCOM S&TOffice of Naval ResearchMajor, United States ArmyApproved for public release. Distribution is unlimited
The global distribution and drivers of alien bird species richness
Alien species are a major component of human-induced environmental change. Variation in the numbers of alien species found in different areas is likely to depend on a combination of anthropogenic and environmental factors, with anthropogenic factors affecting the number of species introduced to new locations, and when, and environmental factors influencing how many species are able to persist there. However, global spatial and temporal variation in the drivers of alien introduction and species richness remain poorly understood. Here, we analyse an extensive new database of alien birds to explore what determines the global distribution of alien species richness for an entire taxonomic class. We demonstrate that the locations of origin and introduction of alien birds, and their identities, were initially driven largely by European (mainly British) colonialism. However, recent introductions are a wider phenomenon, involving more species and countries, and driven in part by increasing economic activity. We find that, globally, alien bird species richness is currently highest at midlatitudes and is strongly determined by anthropogenic effects, most notably the number of species introduced (i.e., "colonisation pressure"). Nevertheless, environmental drivers are also important, with native and alien species richness being strongly and consistently positively associated. Our results demonstrate that colonisation pressure is key to understanding alien species richness, show that areas of high native species richness are not resistant to colonisation by alien species at the global scale, and emphasise the likely ongoing threats to global environments from introductions of species.Ellie E. Dyer, Phillip Cassey, David W. Redding, Ben Collen, Victoria Franks, Kevin J. Gaston, Kate E. Jones, Salit Kark, C. David L. Orme, Tim M. Blackbur
Addressing the nitrogen problem in sugarcane production to reduce pollution of the Great Barrier Reef
The N pollution footprint of sugarcane cropping is large due to inefficiencies caused by mismatched N supply and crop N demand over sugarcane’s long N accumulation phase. The Great Barrier Reef lagoon receives excessive N loads that contribute to the rapidly declining reef health. Exceeding international average nitrous oxide emission rates several fold, sugarcane soils contribute significantly to Australia’s agricultural emissions. Nitrogen pollution reduction schemes over recent decades have mostly targeted reducing N fertiliser rates in line with expected yields and improving soil quality. Overall, these measures have not resulted in the desired N pollution reduction and further innovation is needed to address this problem. We present research that aims to aid agronomic innovation with (i) next-generation fertilisers that
are based on repurposed nutrient-rich wastes and sorbent materials to better match N supply and crop demand and to improve soil function and carbon levels, (ii) understanding of soil N cycling and microbial processes, (iii) legume companion cropping as a source of biologically fixed N, and (iv) genetic improvement of sugarcane that more effectively captures and uses N. We conclude that evidence-based innovation has to support crop growers across climate and soil gradients in the 400,000 hectares of catchments of the Great Barrier Reef. This should include investment into new technologies to support ecologically-sound agriculture and a circular economy without waste and pollution
Interobserver agreement in dysplasia grading: toward an enhanced gold standard for clinical pathology trials
Objective: Interobserver agreement in the context of oral epithelial dysplasia (OED) grading has been notoriously unreliable and can impose barriers for developing new molecular markers and diagnostic technologies. This paper aimed to report the details of a 3-stage histopathology review and adjudication process with the goal of achieving a consensus histopathologic diagnosis of each biopsy. Study Design: Two adjacent serial histologic sections of oral lesions from 846 patients were independently scored by 2 different pathologists from a pool of 4. In instances where the original 2 pathologists disagreed, a third, independent adjudicating pathologist conducted a review of both sections. If a majority agreement was not achieved, the third stage involved a face-to-face consensus review. Results: Individual pathologist pair κ values ranged from 0.251 to 0.706 (fair-good) before the 3-stage review process. During the initial review phase, the 2 pathologists agreed on a diagnosis for 69.9% of the cases. After the adjudication review by a third pathologist, an additional 22.8% of cases were given a consensus diagnosis (agreement of 2 out of 3 pathologists). After the face-to-face review, the remaining 7.3% of cases had a consensus diagnosis. Conclusions: The use of the defined protocol resulted in a substantial increase (30%) in diagnostic agreement and has the potential to improve the level of agreement for establishing gold standards for studies based on histopathologic diagnosis
Visual, Motor and Attentional Influences on Proprioceptive Contributions to Perception of Hand Path Rectilinearity during Reaching
We examined how proprioceptive contributions to perception of hand path straightness are influenced by visual, motor and attentional sources of performance variability during horizontal planar reaching. Subjects held the handle of a robot that constrained goal-directed movements of the hand to the paths of controlled curvature. Subjects attempted to detect the presence of hand path curvature during both active (subject driven) and passive (robot driven) movements that either required active muscle force production or not. Subjects were less able to discriminate curved from straight paths when actively reaching for a target versus when the robot moved their hand through the same curved paths. This effect was especially evident during robot-driven movements requiring concurrent activation of lengthening but not shortening muscles. Subjects were less likely to report curvature and were more variable in reporting when movements appeared straight in a novel “visual channel” condition previously shown to block adaptive updating of motor commands in response to deviations from a straight-line hand path. Similarly, compromised performance was obtained when subjects simultaneously performed a distracting secondary task (key pressing with the contralateral hand). The effects compounded when these last two treatments were combined. It is concluded that environmental, intrinsic and attentional factors all impact the ability to detect deviations from a rectilinear hand path during goal-directed movement by decreasing proprioceptive contributions to limb state estimation. In contrast, response variability increased only in experimental conditions thought to impose additional attentional demands on the observer. Implications of these results for perception and other sensorimotor behaviors are discussed
- …
