3,882 research outputs found

    Bright hot impacts by erupted fragments falling back on the Sun: UV redshifts in stellar accretion

    Full text link
    A solar eruption after a flare on 7 Jun 2011 produced EUV-bright impacts of fallbacks far from the eruption site, observed with the Solar Dynamics Observatory. These impacts can be taken as a template for the impact of stellar accretion flows. Broad red-shifted UV lines have been commonly observed in young accreting stars. Here we study the emission from the impacts in the Atmospheric Imaging Assembly's UV channels and compare the inferred velocity distribution to stellar observations. We model the impacts with 2D hydrodynamic simulations. We find that the localised UV 1600A emission and its timing with respect to the EUV emission can be explained by the impact of a cloud of fragments. The first impacts produce strong initial upflows. The following fragments are hit and shocked by these upflows. The UV emission comes mostly from the shocked front shell of the fragments while they are still falling, and is therefore redshifted when observed from above. The EUV emission instead continues from the hot surface layer that is fed by the impacts. Fragmented accretion can therefore explain broad redshifted UV lines (e.g. C IV 1550A) to speeds around 400 km/s observed in accreting young stellar objects.Comment: 12 pages, 4 figures (movies available upon request), accepted for publicatio

    Extreme Value GARCH modelling with Bayesian Inference

    Get PDF
    RePEC Working Paper Series No: 05/2009Extreme value theory is widely used financial applications such as risk analysis, forecasting and pricing models. One of the major difficulties in the applications to finance and economics is that the assumption of independence of time series observations is generally not satisfied, so that the dependent extremes may not necessarily be in the domain of attraction of the classical generalised extreme value distribution. This study examines a conditional extreme value distribution with the added specification that the extreme values (maxima or minima) follows a conditional autoregressive heteroscedasticity process. The dependence has been modelled by allowing the location and scale parameters of the extreme distribution to vary with time. The resulting combined model, GEV-GARCH, is developed by implementing the GARCH volatility mechanism in these extreme value model parameters. Bayesian inference is used for the estimation of parameters and posterior inference is available through the Markov Chain Monte Carlo (MCMC) method. The model is firstly applied to relevant simulated data to verify model stability and reliability of the parameter estimation method. Then real stock returns are used to consider evidence for the appropriate application of the model. A comparison is made between the GEV-GARCH and traditional GARCH models. Both the GEV-GARCH and GARCH show similarity in the resulting conditional volatility estimates, however the GEV-GARCH model differs from GARCH in that it can capture and explain extreme quantiles better than the GARCH model because of more reliable extrapolation of the tail behaviour

    Detailed diagnostics of an X-ray flare in the single giant HR 9024

    Get PDF
    We analyze a 96 ks Chandra/HETGS observation of the single G-type giant HR 9024. The high flux allows us to examine spectral line and continuum diagnostics at high temporal resolution, to derive plasma parameters. A time-dependent 1D hydrodynamic model of a loop with half-length L=5×1011L = 5 \times 10^{11} cm (R/2\sim R_{\star}/2), cross-section radius r=4.3×1010r = 4.3 \times 10^{10} cm, with a heat pulse of 15 ks and 2×10112 \times 10^{11}~erg cm2^{-2} s1^{-1} deposited at the loop footpoints, satisfactorily reproduces the observed evolution of temperature and emission measure, derived from the analysis of the strong continuum emission. For the first time we can compare predictions from the hydrodynamic model with single spectral features, other than with global spectral properties. We find that the model closely matches the observed line emission, especially for the hot (108\sim 10^8 K) plasma emission of the FeXXV complex at 1.85\sim 1.85\AA. The model loop has L/R1/2L/R_{\star} \sim 1/2 and aspect ratio r/L0.1r/L \sim 0.1 as typically derived for flares observed in active stellar coronae, suggesting that the underlying physics is the same for these very dynamic and extreme phenomena in stellar coronae independently on stellar parameters and evolutionary stage.Comment: 26 pages. Accepted for publication on the Astrophysical Journa

    Radiative accretion shocks along nonuniform stellar magnetic fields in classical T Tauri stars

    Get PDF
    (abridged) AIMS. We investigate the dynamics and stability of post-shock plasma streaming along nonuniform stellar magnetic fields at the impact region of accretion columns. We study how the magnetic field configuration and strength determine the structure, geometry, and location of the shock-heated plasma. METHODS. We model the impact of an accretion stream onto the chromosphere of a CTTS by 2D axisymmetric magnetohydrodynamic simulations. Our model takes into account the gravity, the radiative cooling, and the magnetic-field-oriented thermal conduction. RESULTS. The structure, stability, and location of the shocked plasma strongly depend on the configuration and strength of the magnetic field. For weak magnetic fields, a large component of B may develop perpendicular to the stream at the base of the accretion column, limiting the sinking of the shocked plasma into the chromosphere. An envelope of dense and cold chromospheric material may also develop around the shocked column. For strong magnetic fields, the field configuration determines the position of the shock and its stand-off height. If the field is strongly tapered close to the chromosphere, an oblique shock may form well above the stellar surface. In general, a nonuniform magnetic field makes the distribution of emission measure vs. temperature of the shocked plasma lower than in the case of uniform magnetic field. CONCLUSIONS. The initial strength and configuration of the magnetic field in the impact region of the stream are expected to influence the chromospheric absorption and, therefore, the observability of the shock-heated plasma in the X-ray band. The field strength and configuration influence also the energy balance of the shocked plasma, its emission measure at T > 1 MK being lower than expected for a uniform field. The above effects contribute in underestimating the mass accretion rates derived in the X-ray band.Comment: 11 pages, 11 Figures; accepted for publication on A&A. Version with full resolution images can be found at http://www.astropa.unipa.it/~orlando/PREPRINTS/sorlando_accretion_shocks.pd

    Poly(ADP-ribosyl)ation is involved in the epigenetic control of TET1 gene transcription

    Get PDF
    TET enzymes are the epigenetic factors involved in the formation of the Sixth DNA base 5-hydroxymethylcytosine, whose deregulation has been associated with tumorigenesis. In particular, TET1 acts as tumor suppressor preventing cell proliferation and tumor metastasis and it has frequently been found down-regulated in cancer. Thus, considering the importance of a tight control of TET1 expression, the epigenetic mechanisms involved in the transcriptional regulation of TET1 gene are here investigated. The involvement of poly(ADP-ribosyl)ation in the control of DNA and histone methylation on TET1 gene was examined. PARP activity is able to positively regulate TET1 expression maintaining a permissive chromatin state characterized by DNA hypomethylation of TET1 CpG island as well as high levels of H3K4 trimethylation. These epigenetic modifications were affected by PAR depletion causing TET1 downregulation and in turn reduced recruitment of TET1 protein on HOXA9 target gene. In conclusion, this work shows that PARP activity is a transcriptional regulator of TET1 gene through the control of epigenetic events and it suggests that deregulation of these mechanisms could account for TET1 repression in cancer

    The Soft X-ray Lightcurves of Partially Eclipsed Stellar Flares

    Get PDF
    Most stellar flares' soft X-ray lightcurves possess a `typical' morphology, which consists of a rapid rise followed by a slow exponential decay. However, a study of 216 of the brightest flares on 161 pre-main sequence stars, observed during the Chandra Orion-Ultradeep Project (COUP), showed that many flare lightcurves depart from this typical morphology. While this can be attributed to the superposition of multiple typical flares, we explore the possibility that the time-variable eclipsing of flares by their host stars may also be an important factor. We assume each flare is contained within a single, uniform plasma density magnetic loop and specify the intrinsic variation of the flare's emission measure with time. We consider rotational eclipse by the star itself, but also by circumstellar discs and flare-associated prominences. Based on this simple model, we generate a set of flares similar to those observed in the COUP database. Many eclipses simply reduce the flare's maximum emission measure or decay time. We conclude therefore that eclipses often pass undetected, but usually have only a modest influence on the flare emission measure profile and hence the derived loop lengths. We show that eclipsing can easily reproduce the observed atypical flare morphologies. The number of atypical modelled flare morphologies is however much less than that found in the COUP sample. The large number of observed atypical flare morphologies, therefore, must be attributed to other processes such as multiple flaring loops.Comment: 11 pages, 9 figure

    The flaring and quiescent components of the solar corona

    Full text link
    The solar corona is a template to understand stellar activity. The Sun is a moderately active star, and its corona differs from active stars: active stellar coronae have a double-peaked EM(T) with the hot peak at 8-20 MK, while the non flaring solar corona has one peak at 1-2 MK. We study the average contribution of flares to the solar EM(T) to investigate indirectly the hypothesis that the hot peak of the EM(T) of active stellar coronae is due to a large number of unresolved solar-like flares, and to infer properties on the flare distribution from nano- to macro-flares. We measure the disk-integrated time-averaged emission measure, EM_F(T), of an unbiased sample of solar flares analyzing uninterrupted GOES/XRS light curves over time intervals of one month. We obtain the EM_Q(T) of quiescent corona for the same time intervals from the Yohkoh/SXT data. To investigate how EM_F(T) and EM_Q(T) vary with the solar cycle, we evaluate them at different phases of the cycle (from Dec. 1991 to Apr. 1998). Irrespective of the solar cycle phase, EM_F(T) appears like a peak of the distribution significantly larger than the values of EM_Q(T) for T~5-10 MK. As a result the time-averaged EM(T) of the whole solar corona is double-peaked, with the hot peak, due to time-averaged flares, located at temperature similar of that of active stars, but less enhanced. The EM_F(T) shape supports the hypothesis that the hot EM(T) peak of active coronae is due to unresolved solar-like flares. If this is the case, quiescent and flare components should follow different scaling laws for increasing stellar activity. In the assumption that the heating of the corona is entirely due to flares, from nano- to macro-flares, then either the flare distribution or the confined plasma response to flares, or both, are bimodal.Comment: 8 pages, 7 postscript figures, accepted for publication in Astronomy and Astrophysic
    corecore