Most stellar flares' soft X-ray lightcurves possess a `typical' morphology,
which consists of a rapid rise followed by a slow exponential decay. However, a
study of 216 of the brightest flares on 161 pre-main sequence stars, observed
during the Chandra Orion-Ultradeep Project (COUP), showed that many flare
lightcurves depart from this typical morphology. While this can be attributed
to the superposition of multiple typical flares, we explore the possibility
that the time-variable eclipsing of flares by their host stars may also be an
important factor. We assume each flare is contained within a single, uniform
plasma density magnetic loop and specify the intrinsic variation of the flare's
emission measure with time. We consider rotational eclipse by the star itself,
but also by circumstellar discs and flare-associated prominences. Based on this
simple model, we generate a set of flares similar to those observed in the COUP
database. Many eclipses simply reduce the flare's maximum emission measure or
decay time. We conclude therefore that eclipses often pass undetected, but
usually have only a modest influence on the flare emission measure profile and
hence the derived loop lengths. We show that eclipsing can easily reproduce the
observed atypical flare morphologies. The number of atypical modelled flare
morphologies is however much less than that found in the COUP sample. The large
number of observed atypical flare morphologies, therefore, must be attributed
to other processes such as multiple flaring loops.Comment: 11 pages, 9 figure