274 research outputs found

    Discovery of a transient radiation belt at Saturn

    Get PDF
    Radiation belts have been detected in situ at five planets. Only at Earth however has any variability in their intensity been heretofore observed, in indirect response to solar eruptions and high altitude nuclear explosions. The Cassini spacecraft's MIMI/LEMMS instrument has now detected systematic radiation belt variability elsewhere. We report three sudden increases in energetic ion intensity around Saturn, in the vicinity of the moons Dione and Tethys, each lasting for several weeks, in response to interplanetary events caused by solar eruptions. However, the intensifications, which could create temporary satellite atmospheres at the aforementioned moons, were sharply restricted outside the orbit of Tethys. Unlike Earth, Saturn has almost unchanging inner ion radiation belts: due to Saturn's near-symmetrical magnetic field, Tethys and Dione inhibit inward radial transport of energetic ions, shielding the planet's main, inner radiation belt from solar wind influences

    Magnetospheric considerations for solar system ice state

    Get PDF
    The current lattice configuration of the water ice on the surfaces of the inner satellites of Jupiter and Saturn is likely shaped by many factors. But laboratory experiments have found that energetic proton irradiation can cause a transition in the structure of pure water ice from crystalline to amorphous. It is not known to what extent this process is competitive with other processes in solar system contexts. For example, surface regions that are rich in water ice may be too warm for this effect to be important, even if the energetic proton bombardment rate is very high. In this paper, we make predictions, based on particle flux levels and other considerations, about where in the magnetospheres of Jupiter and Saturn the ∌MeV proton irradiation mechanism should be most relevant. Our results support the conclusions of Hansen and McCord (2004), who related relative level of radiation on the three outer Galilean satellites to the amorphous ice content within the top 1 mm of surface. We argue here that if magnetospheric effects are considered more carefully, the correlation is even more compelling. Crystalline ice is by far the dominant ice state detected on the inner Saturnian satellites and, as we show here, the flux of bombarding energetic protons onto these bodies is much smaller than at the inner Jovian satellites. Therefore, the ice on the Saturnian satellites also corroborates the correlation

    The ion environment near Europa and its role in surface energetics

    Get PDF
    This paper gives the composition, energy spectra, and time variability of energetic ions measured just upstream of Europa. From 100 keV to 100 MeV, ion intensities vary by less than a factor of ∌5 among Europa passes considered between 1997 and 2000. We use the data to estimate the radiation dose rate into Europa's surface for depths 0.01 mm – 1 m. We find that in a critical fraction of the upper layer on Europa's trailing hemisphere, energetic electrons are the principal agent for radiolysis, and their bremsstrahlung photon products, not included in previous studies, dominate the dose below about 1 m. Because ion bombardment is more uniform across Europa's surface, the radiation dose on the leading hemisphere is dominated by the proton flux. Differences exist between this calculation and published doses based on the E4 wake pass. For instance, proton doses presented here are much greater below 1 mm

    Surface composition and properties of Ganymede: Updates from ground-based observations with the near-infrared imaging spectrometer SINFONI/VLT/ESO

    Get PDF
    Ganymede's surface exhibits great geological diversity, with old dark terrains, expressed through the surface composition, which is known to be dominated by two constituents: H2O-ice and an unidentified darkening agent. In this paper, new investigations of the composition of Ganymede's surface at global scale are presented. The analyses are derived from the linear spectral modeling of a high spectral resolution dataset, acquired with the near-infrared (1.40–2.50â€ŻÎŒm) ground-based integral field spectrometer SINFONI (SINgle Faint Object Near-IR Investigation) of the Very Large Telescope (VLT hereafter) located in Chile. We show that, unlike the neighboring moon Europa, photometric corrections cannot be performed using a simple Lambertian model. However, we find that the Oren-Nayar (1994) model, generalizing the Lambert's law for rough surfaces, produces excellent results. Spectral modeling confirms that Ganymede's surface composition is dominated by H2O-ice, which is predominantly crystalline, as well as a darkening agent, but it also clearly highlights the necessity of secondary species to better fit the measurements: sulfuric acid hydrate and salts, likely sulfates and chlorinated. A latitudinal gradient and a hemispherical dichotomy are the strongest spatial patterns observed for the darkening agent, the H2O-ice, and the sulfuric acid: the darkening agent is by far the major compound at the equator and mid-latitudes (≀ ± 35°N), especially on the trailing hemisphere, while the H2O-ice and the sulfuric acid are mostly located at high latitudes and on the leading hemisphere. This anti-correlation is likely a consequence of the bombardment of the constituents in the Jovian magnetosphere which are much more intense at latitudes higher than ±35°N. Furthermore, the modeling confirms that polar caps are enriched in small, fresh, H2O-ice grains (i.e. ≀50â€ŻÎŒm) while equatorial regions are mostly composed of larger grains (i.e. ≄200â€ŻÎŒm, up to 1 mm). Finally, the spatial distribution of the salts is neither related to the Jovian magnetospheric bombardment nor the craters. These species are mostly detected on bright grooved terrains surrounding darker areas. Endogenous processes, such as freezing of upwelling fluids going through the ice shell, may explain this distribution. In addition, a small spectral residue that might be related to brines and/or hydrated silica-bearing minerals are located in the same areas

    HST/STIS Ultraviolet Imaging of Polar Aurora on Ganymede

    Get PDF
    We report new observations of the spectrum of Ganymede in the spectral range 1160 - 1720 A made with the Space Telescope Imaging Spectrograph (STIS) on HST on 1998 October 30. The observations were undertaken to locate the regions of the atomic oxygen emissions at 1304 and 1356 A, previously observed with the GHRS on HST, that Hall et al. (1998) claimed indicated the presence of polar aurorae on Ganymede. The use of the 2" wide STIS slit, slightly wider than the disk diameter of Ganymede, produced objective spectra with images of the two oxygen emissions clearly separated. The OI emissions appear in both hemispheres, at latitudes above 40 degrees, in accordance with recent Galileo magnetometer data that indicate the presence of an intrinsic magnetic field such that Jovian magnetic field lines are linked to the surface of Ganymede only at high latitudes. Both the brightness and relative north-south intensity of the emissions varied considerably over the four contiguous orbits (5.5 hours) of observation, presumably due to the changing Jovian plasma environment at Ganymede. However, the observed longitudinal non-uniformity in the emission brightness at high latitudes, particularly in the southern hemisphere, and the lack of pronounced limb brightening near the poles are difficult to understand with current models. In addition to observed solar HI Lyman-alpha reflected from the disk, extended Lyman-alpha emission resonantly scattered from a hydrogen exosphere is detected out to beyond two Ganymede radii from the limb, and its brightness is consistent with the Galileo UVS measurements of Barth et al. (1997).Comment: 7 pages, 4 figures, accepted for publication in ApJ, June 1, 200

    Satellite sputtering in Saturn’s magnetosphere

    Get PDF
    Abstract The heavy ion plasma and energetic particles continuously sputter the surfaces of the icy satellites embedded in the inner Saturnian magnetosphere. We evaluate satellite sputtering and compare the resulting H2O source distribution with the source distribution expected for the OH cloud recently observed by Hubble Space Telescope. At each satellite we combine, for the Ăżrst time, the data from the Plasma Science (PLS) and Low Energy Charged-Particle (LECP) instruments from Voyager 1 and 2, unifying them into a single plasma distribution function. Based on the calculated satellite sources, we conclude that sputtering of the satellite surfaces cannot produce the observed OH cloud and that a large additional source in the inner magnetosphere is needed to fully explain the HST observations

    Energetic charged particle fluxes relevant to Ganymede's polar region

    Get PDF
    The JEDI instrument made measurements of energetic charged particles near Ganymede during a close encounter with that moon. Here we find ion flux levels are similar close to Ganymede itself but outside its magnetosphere and on near wake and open field lines. But energetic electron flux levels are more than a factor of 2 lower on polar and near-wake field lines than on nearby Jovian field lines at all energies reported here. Flux levels are relevant to the weathering of the surface, particularly processes that affect the distribution of ice, since surface brightness has been linked to the open-closed field line boundary. For this reason, we estimate the sputtering rates expected in the polar regions due to energetic heavy ions. Other rates, such as those related to radiolysis by plasma and particles that can reach the surface, need to be added to complete the picture of charged particle weathering

    Dawn‐Dusk Asymmetry in Energetic (>20 keV) Particles Adjacent to Saturn's Magnetopause

    Get PDF
    Energetic particles (>∌25 keV) have been observed routinely in the terrestrial magnetosheath, but have not been well studied at the magnetosheaths of the outer planets. Here we analyze energetic electrons and ions (mostly protons) in the vicinity (±1 RS) of Saturn's magnetopause, using particle data acquired with the low‐energy magnetosphere measurements system, one of the three sensors of the magnetosphere imaging instrument on board the Cassini spacecraft, during a period of ∌14 years (2004–2017). It is found that energetic particles, especially ions, are also common in Saturn's magnetosheath. A clear inward (toward Saturn) gradient in the electron differential flux is identified, suggestive of magnetospheric sources. Such an inward gradient does not appear in some of the ion channels. We conclude that Saturn's magnetopause acts as a porous barrier for energetic electrons and, to a lesser extent, for energetic ions. A dawn‐dusk asymmetry in the gradient of particle flux across the magnetopause is also identified, with a gradual decrease at the dawn and a sharp decrease at the dusk magnetopause. It is also found that magnetic reconnection enhanced flux levels just outside of the magnetopause, with evidence suggesting that these particles are from magnetospheric sources. These findings strongly suggest that Saturn's magnetosphere is most likely the main source of energetic particles in Saturn's magnetosheath and magnetosphere leakage is an important process responsible for the presence of the energetic particles in Saturn's magnetosheath

    A complete dataset of equatorial projections of Saturn's energetic neutral atom emissions observed by Cassini-INCA

    Get PDF
    Observations of energetic neutral atoms (ENAs) are a useful tool for analyzing ion and neutral abundances in planetary magnetospheres. They are created when hot plasma, originating for example from magnetic reconnection sites, charge-exchanges with the ambient neutral population surrounding the planet. The motion of ENAs is not governed by the magnetic field, allowing remote imaging. During the Cassini mission, the Ion Neutral Camera (INCA) of the Magnetosphere Imaging Instrument (MIMI) collected vast amounts of hydrogen and oxygen ENA observations of Saturn's magnetosphere from a variety of different viewing geometries. In order to enable investigations of the morphology and dynamics of Saturn's ring current, it is useful to re-bin and re-project the camera-like views from the spacecraft-based perspective into a common reference frame. We developed an algorithm projecting INCA's ENA observations into a regular grid in Saturn's equatorial plane. With most neutrals and ions being confined into an equatorial rotating disc, this projection is quite accurate in both spatial location and preservation of ENA intensity, provided the spacecraft is located at large enough elevations. Such projections were performed for all INCA ENA data from the Cassini Saturn tour; the data is available for download together with a Python routine flagging contaminated data and returning detailed spacecraft geometry information. The resulting dataset is a good foundation for investigating for example the statistical properties of Saturn's ring current and its complicated dynamics in relation to other remote and in situ observations of, for example, auroral emissions and magnetotail reconnection events
    • 

    corecore