895 research outputs found

    10Gbit/s modulation of a fast switching slotted Fabry-Pérot tunable laser

    Get PDF
    The device used is a three-section, 3mum wide ridge waveguide laser based on commercially available material. During the fabrication a series of slots are introduced into the front and back sections, which act as sites of internal reflections. The slots are etched to a depth that just penetrates the top of the upper waveguide resulting in an internal reflectance of-1% at each slot. The front, middle, and back sections are 180, 690 and 170 microns long respectively. In this work the back and middle sections are tied together electrically allowing simpler control of the device. By varying the applied DC currents, eight discrete channels are observed over a range of approximately 19nm

    Wind speed dependent size-resolved parameterization for the organic mass fraction of sea spray aerosol

    Get PDF
    For oceans to be a significant source of primary organic aerosol (POA), sea spray aerosol (SSA) must be highly enriched with organics relative to the bulk seawater. We propose that organic enrichment at the air-sea interface, chemical composition of seawater, and the aerosol size are three main parameters controlling the organic mass fraction of sea spray aerosol (OM<sub>SSA</sub>). To test this hypothesis, we developed a new marine POA emission function based on a conceptual relationship between the organic enrichment at the air-sea interface and surface wind speed. The resulting parameterization is explored using aerosol chemical composition and surface wind speed from Atlantic and Pacific coastal stations, and satellite-derived ocean concentrations of chlorophyll-<i>a</i>, dissolved organic carbon, and particulate organic carbon. Of all the parameters examined, a multi-variable logistic regression revealed that the combination of 10 m wind speed and surface chlorophyll-<i>a</i> concentration ([Chl-<i>a</i>]) are the most consistent predictors of OM<sub>SSA</sub>. This relationship, combined with the published aerosol size dependence of OM<sub>SSA</sub>, resulted in a new parameterization for the organic mass fraction of SSA. Global emissions of marine POA are investigated here by applying this newly-developed relationship to existing sea spray emission functions, satellite-derived [Chl-<i>a</i>], and modeled 10 m winds. Analysis of model simulations shows that global annual submicron marine organic emission associated with sea spray is estimated to be from 2.8 to 5.6 Tg C yr<sup>−1</sup>. This study provides additional evidence that marine primary organic aerosols are a globally significant source of organics in the atmosphere

    Ground-based retrieval of continental and marine warm cloud microphysics

    Get PDF
    A technique for retrieving warm cloud microphysics using synergistic ground based remote sensing instruments is presented. The SYRSOC (SYnergistic Remote Sensing Of Cloud) technique utilises a K<sub><i>a</i></sub>-band Doppler cloud RADAR, a LIDAR (or ceilometer) and a multichannel microwave radiometer. SYRSOC retrieves the main microphysical parameters such as cloud droplet number concentration (CDNC), droplets effective radius (<i>r</i><sub>eff</sub>), cloud liquid water content (LWC), and the departure from adiabatic conditions within the cloud. Two retrievals are presented for continental and marine stratocumulus advected over the Mace Head Atmospheric Research Station. Whilst the continental case exhibited high CDCN (<span style="border-top: 1px solid #000; color: #000;"><i>N</i></span> = 382 cm<sup>−3</sup>; 10th-to-90th percentile [9.4–842.4] cm<sup>−3</sup>) and small mean effective radius (<span style="border-top: 1px solid #000; color: #000;"><i>r</i><sub>eff</sub></span> = 4.3; 10th-to-90th percentile [2.9–6.5] μm), the marine case showed low CDNC and large mean effective radius (<span style="border-top: 1px solid #000; color: #000;"><i>N</i></span> = 25 cm<sup>−3</sup>, 10th-to-90th percentile [1.5–69] cm<sup>−3</sup>; <span style="border-top: 1px solid #000; color: #000;"><i>r</i><sub>eff</sub></span> = 28.4 μm, 10th-to-90th percentile [11.2–42.7] μm) as expected since continental air at this location is typically more polluted than marine air. The mean LWC was comparable for the two cases (continental: 0.19 g m<sup>−3</sup>; marine: 0.16 g m<sup>−3</sup>) but the 10th–90th percentile range was wider in marine air (continental: 0.11–0.22 g m<sup>−3</sup>; marine: 0.01–0.38 g m<sup>−3</sup>). The calculated algorithm uncertainty for the continental and marine case for each variable was, respectively, σ<sub><i>N</i></sub> = 161.58 cm<sup>−3</sup> and 12.2 cm<sup>−3</sup>, σ<sub><i>r</i><sub>eff</sub></sub> = 0.86 μm and 5.6 μm, σ<sub>LWC</sub> = 0.03 g m<sup>−3</sup> and 0.04 g m<sup>−3</sup>. The retrieved CDNC are compared to the cloud condensation nuclei concentrations and the best agreement is achieved for a supersaturation of 0.1% in the continental case and between 0.1%–0.75% for the marine stratocumulus. The retrieved <i>r</i><sub>eff</sub> at the top of the clouds are compared to the MODIS satellite <i>r</i><sub>eff</sub>: 7 μm (MODIS) vs. 6.2 μm (SYRSOC) and 16.3 μm (MODIS) vs. 17 μm (SYRSOC) for continental and marine cases, respectively. The combined analysis of the CDNC and the <i>r</i><sub>eff</sub>, for the marine case shows that the drizzle modifies the droplet size distribution and <span style="border-top: 1px solid #000; color: #000;"><i>r</i><sub>eff</sub></span> especially if compared to <i>r</i><sub>eff</sub><sup>MOD</sup>. The study of the cloud subadiabaticity and the LWC shows the general sub-adiabatic character of both clouds with more pronounced departure from adiabatic conditions in the continental case than in the marine

    The first VLBI image of an Infrared-Faint Radio Source

    Get PDF
    Context: To investigate the joint evolution of active galactic nuclei and star formation in the Universe. Aims: In the 1.4 GHz survey with the Australia Telescope Compact Array of the Chandra Deep Field South and the European Large Area ISO Survey - S1 we have identified a class of objects which are strong in the radio but have no detectable infrared and optical counterparts. This class has been called Infrared-Faint Radio Sources, or IFRS. 53 sources out of 2002 have been classified as IFRS. It is not known what these objects are. Methods: To address the many possible explanations as to what the nature of these objects is we have observed four sources with the Australian Long Baseline Array. Results: We have detected and imaged one of the four sources observed. Assuming that the source is at a high redshift, we find its properties in agreement with properties of Compact Steep Spectrum sources. However, due to the lack of optical and infrared data the constraints are not particularly strong.Comment: Accepted for publication in Astronomy and Astrophysics, 5 pages, needs aa.cl

    On the rate of black hole binary mergers in galactic nuclei due to dynamical hardening

    Full text link
    We assess the contribution of dynamical hardening by direct three-body scattering interactions to the rate of stellar-mass black hole binary (BHB) mergers in galactic nuclei. We derive an analytic model for the single-binary encounter rate in a nucleus with spherical and disk components hosting a super-massive black hole (SMBH). We determine the total number of encounters NGWN_{\rm GW} needed to harden a BHB to the point that inspiral due to gravitational wave emission occurs before the next three-body scattering event. This is done independently for both the spherical and disk components. Using a Monte Carlo approach, we refine our calculations for NGWN_{\rm GW} to include gravitational wave emission between scattering events. For astrophysically plausible models we find that typically NGWN_{\rm GW} \lesssim 10. We find two separate regimes for the efficient dynamical hardening of BHBs: (1) spherical star clusters with high central densities, low velocity dispersions and no significant Keplerian component; and (2) migration traps in disks around SMBHs lacking any significant spherical stellar component in the vicinity of the migration trap, which is expected due to effective orbital inclination reduction of any spherical population by the disk. We also find a weak correlation between the ratio of the second-order velocity moment to velocity dispersion in galactic nuclei and the rate of BHB mergers, where this ratio is a proxy for the ratio between the rotation- and dispersion-supported components. Because disks enforce planar interactions that are efficient in hardening BHBs, particularly in migration traps, they have high merger rates that can contribute significantly to the rate of BHB mergers detected by the advanced Laser Interferometer Gravitational-Wave Observatory.Comment: 13 pages, 9 figures, accepted for publication in MNRA

    Hygroscopic and chemical characterisation of Po Valley aerosol

    Get PDF
    Continental summer-time aerosol in the Italian Po Valley was characterised in terms of hygroscopic properties and the influence of chemical composition therein. Additionally, the ethanol affinity of particles was analysed. The campaign-average minima in hygroscopic growth factors (HGFs, at 90% relative humidity) occurred just before and during sunrise from 03:00 to 06:00 LT (all data are reported in the local time), but, more generally, the hygroscopicity during the whole night is very low, particularly in the smaller particle sizes. The average HGFs recorded during the low HGF period were in a range from 1.18 (for the smallest, 35nm particles) to 1.38 (for the largest, 165 nm particles). During the day, the HGF gradually increased to achieve maximum values in the early afternoon hours 12:00–15:00, reaching 1.32 for 35 nm particles and 1.46 for 165 nm particles. Two contrasting case scenarios were encountered during the measurement period: Case 1 was associated with westerly air flow moving at a moderate pace and Case 2 was associated with more stagnant, slower moving air from the north-easterly sector. Case 1 exhibited weak diurnal temporal patterns, with no distinct maximum or minimum in HGF or chemical composition, and was associated with moderate non-refractory aerosol mass concentrations (for 50% size cut at 1 μ) of the order of 4.5 μg m<sup>−3</sup>. For Case 1, organics contributed typically 50% of the mass. Case 2 was characterised by >9.5 μg m<sup>−3</sup> total non-refractory mass (<1 μ) in the early morning hours (04:00), decreasing to ~3 μg m<sup>−3</sup> by late morning (10:00) and exhibited strong diurnal changes in chemical composition, particularly in nitrate mass but also in total organic mass concentrations. Specifically, the concentrations of nitrate peaked at night-time, along with the concentrations of hydrocarbon-like organic aerosol (HOA) and of semi-volatile oxygenated organic aerosol (SV-OOA). In general, organic growth factors (OGFs) followed a trend which was opposed to HGF and also to the total organic mass as measured by the aerosol mass spectrometer. The analysis of the HGF probability distribution function (PDF) reveals an existence of a predominant "more hygroscopic" (MH) mode with HGF of 1.5 around noon, and two additional modes: one with a "less hygroscopic" (LH) HGF of 1.26, and another with a "barely hygroscopic" (BH) mode of 1.05. Particles sized 165 nm exhibited moderate diurnal variability in HGF, ranging from 80% at night to 95% of "more hygroscopic" growth factors (i.e. HGFs 1.35–1.9) around noon. The diurnal changes in HGF progressively became enhanced with decreasing particle size, decreasing from 95% "more hygroscopic" growth factor fraction at noon to 10% fraction at midnight, while the "less hygroscopic" growth factor fraction (1.13–1.34) increased from 5% at noon to > 60% and the "barely hygroscopic" growth factor fraction (1.1–1.2) increased from less than 2% at noon to 30% at midnight. Surprisingly, the lowest HGFs occurred for the period when nitrate mass reached peak concentrations (Case 2). We hypothesised that the low HGFs of nitrate-containing particles can be explained by a) an organic coating suppressing the water-uptake, and/or by b) the existence of nitrates in a less hygroscopic state, e.g. as organic nitrates. The latter hypothesis allows us to explain also the reduced OGFs observed during the early morning hours (before dawn) when nitrate concentrations peaked, based on the evidence that organic nitrates have significant lower ethanol affinity than other SV-OOA compounds

    Model evaluation of marine primary organic aerosol emission schemes

    Get PDF
    In this study, several marine primary organic aerosol (POA) emission schemes have been evaluated using the GEOS-Chem chemical transport model in order to provide guidance for their implementation in air quality and climate models. These emission schemes, based on varying dependencies of chlorophyll &lt;i&gt;a&lt;/i&gt; concentration ([chl &lt;i&gt;a&lt;/i&gt;]) and 10 m wind speed (&lt;i&gt;U&lt;/i&gt;&lt;sub&gt;10&lt;/sub&gt;), have large differences in their magnitude, spatial distribution, and seasonality. Model comparison with weekly and monthly mean values of the organic aerosol mass concentration at two coastal sites shows that the source function exclusively related to [chl &lt;i&gt;a&lt;/i&gt;] does a better job replicating surface observations. Sensitivity simulations in which the negative &lt;i&gt;U&lt;/i&gt;&lt;sub&gt;10&lt;/sub&gt; and positive [chl &lt;i&gt;a&lt;/i&gt;] dependence of the organic mass fraction of sea spray aerosol are enhanced show improved prediction of the seasonality of the marine POA concentrations. A top-down estimate of submicron marine POA emissions based on the parameterization that compares best to the observed weekly and monthly mean values of marine organic aerosol surface concentrations has a global average emission rate of 6.3 Tg yr&lt;sup&gt;−1&lt;/sup&gt;. Evaluation of existing marine POA source functions against a case study during which marine POA contributed the major fraction of submicron aerosol mass shows that none of the existing parameterizations are able to reproduce the hourly-averaged observations. Our calculations suggest that in order to capture episodic events and short-term variability in submicron marine POA concentration over the ocean, new source functions need to be developed that are grounded in the physical processes unique to the organic fraction of sea spray aerosol

    Stage of perinatal development regulates skeletal muscle mitochondrial biogenesis and myogenic regulatory factor genes with little impact of growth restriction or cross-fostering

    Full text link
    Foetal growth restriction impairs skeletal muscle development and adult muscle mitochondrial biogenesis. We hypothesized that key genes involved in muscle development and mitochondrial biogenesis would be altered following uteroplacental insufficiency in rat pups, and improving postnatal nutrition by cross-fostering would ameliorate these deficits. Bilateral uterine vessel ligation (Restricted) or sham (Control) surgery was performed on day 18 of gestation. Males and females were investigated at day 20 of gestation (E20), 1 (PN1), 7 (PN7) and 35 (PN35) days postnatally. A separate cohort of Control and Restricted pups were cross-fostered onto a different Control or Restricted mother and examined at PN7. In both sexes, peroxisome proliferator-activated receptor (PPAR)-&gamma; coactivator-1&alpha; (PGC-1&alpha;), cytochrome c oxidase subunits 3 and 4 (COX III and IV) and myogenic regulatory factor 4 expression increased from late gestation to postnatal life, whereas mitochondrial transcription factor A, myogenic differentiation 1 (MyoD), myogenin and insulin-like growth factor I (IGF-I) decreased. Foetal growth restriction increased MyoD mRNA in females at PN7, whereas in males IGF-I mRNA was higher at E20 and PN1. Cross-fostering Restricted pups onto a Control mother significantly increased COX III mRNA in males and COX IV mRNA in both sexes above controls with little effect on other genes. Developmental age appears to be a major factor regulating skeletal muscle mitochondrial and developmental genes, with growth restriction and cross-fostering having only subtle effects. It therefore appears that reductions in adult mitochondrial biogenesis markers likely develop after weaning.<br /
    corecore