281 research outputs found

    Where'd my tail go?

    Get PDF

    Fetal movements as a predictor of health

    No full text
    The key determinant to a fetus maintaining its health is through adequate perfusion and oxygen transfer mediated by the functioning placenta. When this equilibrium is distorted, a number of physiological changes including reduced fetal growth occur to favour survival. Technologies have been developed to monitor these changes with a view to prolong intrauterine maturity whilst reducing the risks of stillbirth. Many of these strategies involve complex interpretation, for example Doppler ultrasound for fetal blood flow and computerisedcomputerized analysis of fetal heart rate changes. However, even with these modalities of fetal assessment to determine the optimal timing of delivery, fetal movements remain integral to clinical decision making. In high risk cohorts with fetal growth restriction, the manifestation of a reduction in perceived movements may warrant an expedited delivery. Despite this, there remains has been little evolution in the development of technologies to objectively define evaluate normal fetal movement behavior for behavior, and where there has, there has been no linkage to clinical useapplication. In tThis review we is an attempt to understand synthesize currently available literature on the value of fetal movement analysis as a method of assessing fetal wellbeing, and show how interdisciplinary developments in this area may aid in improvements to clinical outcomes

    Discovery of genomic variations by whole-genome resequencing of the North American Araucana chicken

    Get PDF
    Gallus gallus (chicken) is phenotypically diverse, with over 60 recognized breeds, among the myriad species within the Aves lineage. Domestic chickens have been under artificial selection by humans for thousands of years for agricultural purposes. The North American Araucana (NAA) breed arose as a cross between the Chilean “Collonocas” that laid blue eggs and was rumpless and the “Quetros” that had unusual tufts but with tail. NAAs were introduced from South America in the 1940s and have been kept as show birds by enthusiasts since then due to several distinctive traits: laying eggs with blue eggshells, characteristic ear-tufts, a pea comb, and rumplessness. The population has maintained variants for clean-faced and tufted, as well as tailed and rumplessness traits making it advantageous for genetic studies. Genome resequencing of six NAA chickens with a mixture of these traits was done to 71-fold coverage using Illumina HiSeq 2000 paired-end reads. Trimmed and concordant reads were mapped to the Gallus_gallus-5.0 reference genome (galGal5), generated from a female Red Junglefowl (UCD001). To identify candidate genes that are associated with traits of the NAA, their genome was compared with the Korean Araucana, Korean Domestic and White Leghorn breeds. Genomic regions with significantly reduced levels of heterogeneity were detected on five different chromosomes in NAA. The sequence data generated confirm the identity of variants responsible for the blue eggshells, pea comb, and rumplessness traits of NAA and propose one for ear-tufts

    Kontribusi USAhatani Ternak Kambing dalam Meningkatkan Pendapatan Petani (Studi Kasus di Desa Batungsel, Kecamatan Pupuan, Kabupaten Tabanan)

    Full text link
    The aims of this study were to analyze: (1) goat farm contribution to the farmer\u27s income, (2) minimum farm scale for providing benefit, and (3) financial feasibility of the goat farm. This study was conducted in the Batungsel Village, Pupuan District, Tabanan Regency. Interview used questioner to farmers is done to collect data. Income analysis, BEP (Break Event Point), Profit Rate, and R/C ratio, was used in this study. The results of this study showed that: net income of the farmer from goat farm was Rp. 6,375,000. Profit rate 66.93% and R/C ratio of 1.67 showed that the goat farm was feasible financially. Break Event Point can be attain on Rp. 6,284,393 of the revenue or 8 goat of production. Income from goat farm give the largest contribution to total farmer income. This study indicated that the goat farm can be used as a solution to reducing poverty rate in the villages

    Multisensory integration of social signals by a pathway from the basal amygdala to the auditory cortex in maternal mice

    Get PDF
    Social encounters are inherently multimodal events, yet how and where social cues of distinct modalities merge and interact in the brain is poorly understood. For example, when their pups wander away from the nest, mother mice use a combination of vocal and olfactory signals emitted by the pups to locate and retrieve them. Previous work revealed the emergence of multisensory interactions in the auditory cortex (AC) of both dams and virgins who co-habitate with pups (‘surrogates’). Here we identify a neural pathway that integrates information about odors with responses to sound. We found that a scattered population of glutamatergic neurons in the basal amygdala (BA) projects to the AC and responds to odors, including the smell of pups. These neurons also exhibit increased activity when the surrogate female is searching for pups. Finally, we show that selective optogenetic activation of BA-AC neurons modulates responses to pup calls, and that this modulation switches from predominantly suppressive to predominantly excitatory after maternal experience. This supports an underappreciated role for the amygdala in directly shaping sensory representations in an experience-dependent manner. We propose that the BA-AC pathway integrates olfaction and audition to facilitate maternal care, and speculate that it may carry valence information to the AC

    HIF-1α is required for hematopoietic stem cell mobilization and 4-prolyl hydroxylase inhibitors enhance mobilization by stabilizing HIF-1α

    Get PDF
    Many patients with hematological neoplasms fail to mobilize sufficient numbers of hematopoietic stem cells (HSCs) in response to granulocyte colony-stimulating factor (G-CSF) precluding subsequent autologous HSC transplantation. Plerixafor, a specific antagonist of the chemokine receptor CXCR4, can rescue some but not all patients who failed to mobilize with G-CSF alone. These refractory poor mobilizers cannot currently benefit from autologous transplantation. To discover alternative targetable pathways to enhance HSC mobilization, we studied the role of hypoxia-inducible factor-1α (HIF-1α) and the effect of HIF-1α pharmacological stabilization on HSC mobilization in mice. We demonstrate in mice with HSC-specific conditional deletion of the Hif1a gene that the oxygen-labile transcription factor HIF-1α is essential for HSC mobilization in response to G-CSF and Plerixafor. Conversely, pharmacological stabilization of HIF-1α with the 4-prolyl hydroxylase inhibitor FG-4497 synergizes with G-CSF and Plerixafor increasing mobilization of reconstituting HSCs 20-fold compared with G-CSF plus Plerixafor, currently the most potent mobilizing combination used in the clinic

    Prenatal growth map of the mouse knee joint by means of deformable registration technique.

    Get PDF
    Joint morphogenesis is the process during which distinct and functional joint shapes emerge during pre- and post-natal joint development. In this study, a repeatable semi-automatic protocol capable of providing a 3D realistic developmental map of the prenatal mouse knee joint was designed by combining Optical Projection Tomography imaging (OPT) and a deformable registration algorithm (Sheffield Image Registration toolkit, ShIRT). Eleven left limbs of healthy murine embryos were scanned with OPT (voxel size: 14.63ÎŒm) at two different stages of development: Theiler stage (TS) 23 (approximately 14.5 embryonic days) and 24 (approximately 15.5 embryonic days). One TS23 limb was used to evaluate the precision of the displacement predictions for this specific case. The remaining limbs were then used to estimate Developmental Tibia and Femur Maps. Acceptable uncertainties of the displacement predictions computed from repeated images were found for both epiphyses (between 1.3ÎŒm and 1.4ÎŒm for the proximal tibia and between 0.7ÎŒm and 1.0ÎŒm for the femur, along all directions). The protocol was found to be reproducible with maximum Modified Housdorff Distance (MHD) differences equal to 1.9 ÎŒm and 1.5 ÎŒm for the tibial and femoral epiphyses respectively. The effect of the initial shape of the rudiment affected the developmental maps with MHD of 21.7 ÎŒm and 21.9 ÎŒm for the tibial and femoral epiphyses respectively, which correspond to 1.4 and 1.5 times the voxel size. To conclude, this study proposes a repeatable semi-automatic protocol capable of providing mean 3D realistic developmental map of a developing rudiment allowing researchers to study how growth and adaptation are directed by biological and mechanobiological factors

    Stresses and strains on the human fetal skeleton during development

    Get PDF
    Mechanical forces generated by fetal kicks and movements result in stimulation of the fetal skeleton in the form of stress and strain. This stimulation is known to be critical for prenatal musculoskeletal development; indeed, abnormal or absent movements have been implicated in multiple congenital disorders. However, the mechanical stress and strain experienced by the developing human skeleton in utero have never before been characterized. Here, we quantify the biomechanics of fetal movements during the second half of gestation by modelling fetal movements captured using novel cine-magnetic resonance imaging technology. By tracking these movements, quantifying fetal kick and muscle forces, and applying them to three-dimensional geometries of the fetal skeleton, we test the hypothesis that stress and strain change over ontogeny. We find that fetal kick force increases significantly from 20 to 30 weeks' gestation, before decreasing towards term. However, stress and strain in the fetal skeleton rises significantly over the latter half of gestation. This increasing trend with gestational age is important because changes in fetal movement patterns in late pregnancy have been linked to poor fetal outcomes and musculoskeletal malformations. This research represents the first quantification of kick force and mechanical stress and strain due to fetal movements in the human skeleton in utero, thus advancing our understanding of the biomechanical environment of the uterus. Further, by revealing a potential link between fetal biomechanics and skeletal malformations, our work will stimulate future research in tissue engineering and mechanobiology

    Spina bifida-predisposing heterozygous mutations in Planar Cell Polarity genes and Zic2 reduce bone mass in young mice

    Get PDF
    Fractures are a common comorbidity in children with the neural tube defect (NTD) spina bifida. Mutations in the Wnt/planar cell polarity (PCP) pathway contribute to NTDs in humans and mice, but whether this pathway independently determines bone mass is poorly understood. Here, we first confirmed that core Wnt/PCP components are expressed in osteoblasts and osteoclasts in vitro. In vivo, we performed detailed ”CT comparisons of bone structure in tibiae from young male mice heterozygous for NTD-associated mutations versus WT littermates. PCP signalling disruption caused by Vangl2 (Vangl2Lp/+) or Celsr1 (Celsr1Crsh/+) mutations significantly reduced trabecular bone mass and distal tibial cortical thickness. NTD-associated mutations in non-PCP transcription factors were also investigated. Pax3 mutation (Pax3Sp2H/+) had minimal effects on bone mass. Zic2 mutation (Zic2Ku/+) significantly altered the position of the tibia/fibula junction and diminished cortical bone in the proximal tibia. Beyond these genes, we bioinformatically documented the known extent of shared genetic networks between NTDs and bone properties. 46 genes involved in neural tube closure are annotated with bone-related ontologies. These findings document shared genetic networks between spina bifida risk and bone structure, including PCP components and Zic2. Genetic variants which predispose to spina bifida may therefore independently diminish bone mass
    • 

    corecore