160 research outputs found

    The dynamics of a hole in a CuO_4 plaquette: electron energy-loss spectroscopy of Li_2CuO_2

    Get PDF
    We have measured the energy and momentum dependent loss function of Li_2CuO_2 single crystals by means of electron energy-loss spectroscopy in transmission. Using the same values for the model parameters, the low-energy features of the spectrum as well as published Cu 2p_(3/2) x-ray photoemission data of Li_2CuO_2 are well described by a cluster model that consists of a single CuO_4 plaquette only. This demonstrates that charge excitations in Li_2CuO_2 are strongly localized.Comment: 5 pages, 5 figure

    Resonant inelastic x-ray scattering in one-dimensional copper oxides

    Full text link
    The Cu K-edge resonant inelastic x-ray scattering (RIXS) spectrum in one-dimensional insulating cuprates is theoretically examined by using the exact diagonalization technique for the extended one-dimensional Hubbard model with nearest neighbor Coulomb interaction. We find the following characteristic features that can be detectable by RIXS experiments: (i) The spectrum with large momentum transfer indicates the formation of excitons, i.e., bound states of holon and doublon. (ii) The spectrum with small momentum transfer depends on the incident photon energy. We propose that the RIXS provides a unique opportunity to study the upper Hubbard band in one-dimensional cuprates.Comment: 3 pages with 4 figures, minor changes, to appear in Phys.Rev.

    Mimicking the Human Tympanic Membrane: The Significance of Scaffold Geometry

    Get PDF
    The human tympanic membrane (TM) captures sound waves from the environment and transforms them into mechanical motion. The successful transmission of these acoustic vibrations is attributed to the unique architecture of the TM. However, a limited knowledge is available on the contribution of its discrete anatomical features, which is important for fabricating functional TM replacements. This work synergizes theoretical and experimental approaches toward understanding the significance of geometry in tissue-engineered TM scaffolds. Three test designs along with a plain control are chosen to decouple some of the dominant structural elements, such as the radial and circumferential alignment of the collagen fibrils. In silico models suggest a geometrical dependency of their mechanical and acoustical responses, where the presence of radially aligned fibers is observed to have a more prominent effect compared to their circumferential counterparts. Following which, a hybrid fabrication strategy combining electrospinning and additive manufacturing has been optimized to manufacture biomimetic scaffolds within the dimensions of the native TM. The experimental characterizations conducted using macroindentation and laser Doppler vibrometry corroborate the computational findings. Finally, biological studies with human dermal fibroblasts and human mesenchymal stromal cells reveal a favorable influence of scaffold hierarchy on cellular alignment and subsequent collagen deposition

    Nonlinear optical response and spin-charge separation in one-dimensional Mott insulators

    Full text link
    We theoretically study the nonlinear optical response and photoexcited states of the Mott insulators. The nonlinear optical susceptibility \chi^(3) is calculated by using the exact diagonalization technique on small clusters. From the systematic study of the dependence of \chi^(3) on dimensionality, we find that the spin-charge separation plays a crucial role in enhancing \chi^(3) in the one-dimensional (1D) Mott insulators. Based on this result, we propose a holon-doublon model, which describes the nonlinear response in the 1D Mott insulators. These findings show that the spin-charge separation will become a key concept of optoelectronic devices.Comment: 5 pages with 3 figures, to appear in PRB RC, 15 August 200

    Imaging small-amplitude magnetization dynamics in a longitudinally magnetized microwire

    Get PDF
    Copyright © 2008 The American Physical SocietyWe have used time-resolved scanning Kerr microscopy to study spin waves in a magnetic microwire subjected to a bias magnetic field applied parallel to its long axis. The spin-wave spectra obtained from different points near one end of the wire reveal several normal modes. We found that modes of a higher frequency occupied regions located further from the end of the wire. This was interpreted in terms of the confinement of the spin-wave modes by a nonuniform demagnetizing field. Furthermore, at a particular distance from the end of the wire, two or more modes occupying different regions along the width of the wire were observed. This was interpreted in terms of the confinement of the spin-wave modes due to an asymmetric variation in the local angle between the static magnetization and the effective direction of the wave vector of the confined modes. Images of the dynamic magnetization that are acquired at fixed pump-probe time delays revealed stripes lying perpendicular to the long axis of the wire and, hence, to the applied magnetic field. We interpret the stripe pattern in terms of a collective mode of the quasiperiodic system of ripple domains existing within the polycrystalline sample. Cur results give an additional insight into the connection between the nonuniform static magnetic state in small magnetic elements and their precessional dynamics, which is fundamentally important for the design of future high-speed switching and spin-wave logic devices of magnonics

    Oxygen Moment Formation and Canting in Li2CuO2

    Full text link
    The possibilities of oxygen moment formation and canting in the quasi-1D cuprate Li2CuO2 are investigated using single crystal neutron diffraction at 2 K. The observed magnetic intensities could not be explained without the inclusion of a large ordered oxygen moment of 0.11(1) Bohr magnetons. Least-squares refinement of the magnetic structure of Li2CuO2 in combination with a spin-density Patterson analysis shows that the magnetization densities of the Cu and O atoms are highly aspherical, forming quasi-1D ribbons of localised Cu and O moments. Magnetic structure refinements and low-field magnetization measurements both suggest that the magnetic structure of Li2CuO2 at 2 K may be canted. A possible model for the canted configuration is proposed.Comment: 10 pages, 8 figures (screen resolution

    Realistic description of electron-energy loss spectroscopy for One-Dimensional Sr2_2CuO3_3

    Full text link
    We investigate the electron-energy loss spectrum of one-dimensional undoped CuO3_{3} chains within an extended multi-band Hubbard model and an extended one-band Hubbard model, using the standard Lanczos algorithm. Short-range intersite Coulomb interactions are explicitly included in these models, and long-range interactions are treated in random-phase approximation. The results for the multi-band model with standard parameter values agree very well with experimental spectra of Sr2_{2}CuO3_{3}. In particular, the width of the main structure is correctly reproduced for all values of momentum transfer. It is shown for both models that intersite Coulomb interactions mainly lead to an energy shift of the spectra. We find no evidence for enhanced intersite interactions in Sr2_{2}CuO3_{3}.Comment: 4 pages, 4 figure

    Hole distribution for (Sr,Ca,Y,La)_14 Cu_24 O_41 ladder compounds studied by x-ray absorption spectroscopy

    Get PDF
    The unoccupied electronic structure for the Sr_14Cu_24O_41 family of two-leg ladder compounds was investigated for different partial substitutions of Sr^2+ by Ca^2+, leaving the nominal hole count constant, and by Y^3+ or La^3+, reducing the nominal hole count from its full value of 6 per formula unit. Using polarization-dependent x-ray absorption spectroscopy on single crystals, hole states on both the chain and ladder sites could be studied. While for intermediate hole counts all holes reside on O sites of the chains, a partial hole occupation on the ladder sites in orbitals oriented along the legs is observed for the fully doped compound Sr_14Cu_24O_41. On substitution of Ca for Sr orbitals within the ladder planes but perpendicular to the legs receive some hole occupation as well.Comment: 10 pages RevTeX style with 7 embedded figures + 1 table; accepted by Phys. Rev.

    Validity and validation in archetype analysis: practical assessment framework and guidelines

    Get PDF
    Archetype analysis is a promising approach in sustainability science to identify patterns and explain mechanisms shaping the sustainability of social-ecological systems. Although considerable efforts have been devoted to developing quality standards and methodological advances for archetype analysis, archetype validation remains a major challenge. Drawing on the insights from two international workshops on archetype analysis and on broader literature on validity, we propose a framework that identifies and describes six dimensions of validity: conceptual; construct; internal; external; empirical; and application validity. We first discuss the six dimensions in relation to different methodological approaches and purposes of archetype analysis. We then present an operational use of the framework for researchers to assess the validity of archetype analysis and to support sound archetype identification and policy-relevant applications. Finally, we apply our assessment to 18 published archetype analyses, which we use to describe the challenges and insights in validating the different dimensions and suggest ways to holistically improve the validity of identified archetypes. With this, we contribute to more rigorous archetype analyses, helping to develop the potential of the approach for guiding sustainability solutions.Peer Reviewe

    The unusual electronic structure of the "pseudo-ladder" compound CaCu2O3

    Full text link
    Experimental and theoretical studies of the unoccupied electronic structure of CaCu2O3 single crystals have been performed using polarization-dependent x-ray absorption spectroscopy and band structure calculations. The measured hole distribution shows an unusual large number of holes in orbitals parallel to the interlayer direction which is in agreement with the theoretical analysis. CaCu2O3 deviates significantly from the standard pd-sigma cuprate picture. The corresponding strong interlayer exchange is responsible for the missing spin gap generic for other two-leg ladder cuprates.Comment: 4 pages, 3 figures include
    • …
    corecore