2,084 research outputs found
Optimal tracking for pairs of qubit states
In classical control theory, tracking refers to the ability to perform
measurements and feedback on a classical system in order to enforce some
desired dynamics. In this paper we investigate a simple version of quantum
tracking, namely, we look at how to optimally transform the state of a single
qubit into a given target state, when the system can be prepared in two
different ways, and the target state depends on the choice of preparation. We
propose a tracking strategy that is proved to be optimal for any input and
target states. Applications in the context of state discrimination, state
purification, state stabilization and state-dependent quantum cloning are
presented, where existing optimality results are recovered and extended.Comment: 15 pages, 8 figures. Extensive revision of text, optimality results
extended, other physical applications include
Rise in the frequency of cloud cover in LANDSAT data for the period 1973 to 1981
Percentages of cloud cover in LANDSAT imagery were used to calculate the cloud cover monthly average statistic for each LANDSAT scene in Brazil, during the period of 1973 to 1981. The average monthly cloud cover and the monthly minimum cloud cover were also calculated for the regions of north, northeast, central west, southeast and south, separately
Fatigue Identification and Management in Flight Training: An Investigation of Collegiate Aviation Pilots
Pilot fatigue is a significant hazard affecting flight operations; Generally the product of one or more factors: Disrupted or lack of sleep; Inadequate food and or fluid intake; Mental; and Physical fatigue.
Previous studies have focused on military and commercial flight operations; Little to nothing has been done to investigate fatigue identification & management by general aviation pilots
Control of uncertain compartmental systems
\ A study of the performance of mass control for compartmental systems, under the presence of uncertainties, is presented. Bounds for the asymptotical mass offset are derived as a functional of the uncertainty bounds. The obtained results are illustrated by simulations for the case of neuromuscular blockade control of patients undergoing surgery
The Impact of Human Factors and Maintenance Documentation on Aviation Safety: An Analysis of 15 Years of Accident Data Through the PEAR Framework
Regardless of the type of maintenance performed on aircraft, instructions are to be used to provide the aviation technicians completing the maintenance activities with guidance on, and an outline of, the maintenance items to be performed and completed. However, the use of instructions does not guarantee the correct and proper completion of the maintenance activities as the instructions may be erroneous and/or maintenance personnel can misunderstand, misinterpret, or improperly follow the procedures outlined. Resulting maintenance errors can potentially result in aircraft accidents, as illustrated by Air Midwest Flight 5481. With the purpose of understanding how human factors associated with written maintenance instructions have contributed to aircraft accidents, the researchers qualitatively analyzed, using the people (P), environment (E), actions (A), resources (R) –PEAR –framework, 12 aircraft accidents that occurred from January 1, 2003,through December 31, 2017,under Part 121 or Part 135 operations in the United States that had maintenance instruction-related errors as contributing or causal factors. The detailed accident information, including causal factors, were retrieved from the aircraft accident reports provided by the National Transportation Safety Board (NTSB). The findings indicated that maintenance activities, specifically in terms of the adequacy and proper use of maintenance instructions, are largely impacted by human factor elements, such as the overall organizational environment and the resources available
Método EPS para manejo da irrigação de forrageiras.
bitstream/CPPSE-2010/19159/1/PROCICircT63FCM2009.00422.pd
Utilizing UAS to Support Wildlife Hazard Management Efforts by Airport Operators
The FAA requires airports operating under the Code of Federal Regulations Part 139 to conduct a wildlife hazard assessment (WHA) when some wildlife-strike events have occurred at or near the airport. The WHA should be conducted by a Qualified Airport Wildlife Biologist (QAWB) and must contain several elements, including the identification of the wildlife species observed and their numbers; local movements; daily and seasonal occurrences; and the identification and location of features on and near the airport that could attract wildlife. Habitats and land-use practices at and around the airport are key factors affecting wildlife species and the size of their populations in the airport environment. The purpose of this ongoing study is to investigate how UAS technologies could be safely and effectively applied to identify hazardous wildlife species to aviation operations as well as potential wildlife hazard attractants within the airport jurisdiction. Researchers have used a DJI Mavic 2 Enterprise Dual drone with visual and thermal cameras to collect data. Data have been collected in a private airport in a “Class G” airspace. We have applied different risk mitigation strategies to mitigate risks associated with drone operations in an airport environment, including a visual observer during data collection, and an ADS-B flight box to obtain information of manned aircraft at and around the airport. Multiple flights were conducted in different days of the week as well as different times of the day. Noteworthy to mention we have had the technical support of QAWB throughout this study. Preliminary findings suggest that UAS can facilitate the observations made by a QAWB during a WHA, including the identification and assessment of potential wildlife attractants (e.g., wetlands), and the identification of wildlife species (e.g., White ibis). Additionally, initial findings indicate that UAS facilitates data collection in areas that are difficult to access by ground-based means (e.g., wetlands). Another key finding of this study was that our team could observe, and with the assistance of the QAWB identify different wildlife species and habitats simultaneously during each UAS flight. In different words, from a single image (video and/or picture) a QAWB could obtain valuable information about different wildlife species and related habitats. Lastly, results suggest that the versatility and speed of UAS (including their high-quality cameras and sensors) ensure that data can be collected more thoroughly and faster over large areas during a WHA
Pattern-based multi-cloud architecture migration
Many organizations migrate on-premise software applications to the cloud. However, current coarse-grained cloud migration solutions have made such migrations a non transparent task, an endeavor based on trial-anderror. This paper presents Variability-based, Pattern-driven Architecture Migration .V-PAM), a migration method based on (i) a catalogue of fine-grained service-based cloud architecture migration patterns that target multi-cloud, (ii) a situational migration process framework to guide pattern selection and composition, and (iii) a variability model to structure system migration into a coherent framework. The proposed migration patterns are based on empirical evidence from several migration projects, best practice for cloud architectures and a systematic literature review of existing research. Variability-based, Pattern-driven Architecture Migration allows an organization to (i) select appropriate migration patterns, (ii) compose them to define a migration plan, and (iii) extend them based on the identification of new patterns in new contexts. The patterns are at the core of our solution, embedded into a process model, with their selection governed by a variability model
Wildlife Hazards at Airports: A Practical Review
Globally, aircraft accidents and incidents due to wildlife strikes are an increasingly serious safety concern;
Airport operators have a professional and legal responsibility to provide an environment conducive to safe aircraft operations;
Airport operators and managers have been sued for property damage and / or for human injuries and death in the aftermath of aircraft accidents due to wildlife strikes
- …