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Abstract— A study of the performance of mass control for
compartmental systems, under the presence of uncertainties,
is presented. Bounds for the asymptotical mass offset are
derived as a functional of the uncertainty bounds. The
obtained results are illustrated by simulations for the case
of neuromuscular blockade control of patients undergoing
surgery.

Index Terms—Compartmental systems, positive control,
uncertain systems, neuromuscular blockade control.

I. INTRODUCTION

Compartmental models have been successfully used to
model biomedical and pharmacokinetical systems, see, for
instance, [2] or [4]. Compartmental systems consist of a
finite number of subsystems, the compartments, which
exchange matter with each other and with the environ-
ment. Such systems form a subclass of positive systems
(i.e., systems for which the state and output variables
remain nonnegative whenever the input is nonnegative).
As is well-known, in this case, the design of suitable
control laws is more delicate, since one has to guarantee
the positivity of the control input. In this framework,
a nonnegative adaptive control law is proposed in [3],
in order to guarantee the partial asymptotic set-point
stability of the closed loop system. On the other hand,
a positive feedback control law is proposed in [1], in
order to stabilise the total system mass at an arbitrary
set-point. This law was used in [8] for the control of the
neuromuscular blockade (see [6], [7] and [9]) of patients
undergoing surgery, but no analysis was made of the effect
of parameter uncertainty in its performance.

In this paper, we try to fill in this gap, not only for
the neuromuscular blockade model, but for a wide class
of compartmental systems. More concretely, we consider
that the control law is tuned for a nominal process model
that contains an additive uncertainty with respect to the
real model, and analyse the behavior of the total mass in
the controlled system. It turns out that, in this case, bounds
for the asymptotical mass offset can be easily expressed
in terms of the system uncertainties.

II. COMPARTMENTAL SYSTEMS

Compartmental systems are dynamical systems de-
scribed by a set of equations of the form

ẋi =
∑

j �=i
fji(x) − ∑

l �=i
fil(x) − fi0(x) + f0i(x)

i = 1, . . . , n

(see [2] or [10]) where x = (x1, . . . , xn)T is the state
variable and xi and fij take nonnegative values. Each

equation describes the evolution of the quantity or con-
centration of material within a subsystem, called compart-
ment. Since the compartments exchange with each other
and with the environment, in the above equation, xi is the
amount (or concentration) of material in compartment i,
fij is the flow rate from compartment j to compartment i
and the subscript 0 denotes the environment (see [2]). In
this paper, we consider the class of linear time-invariant
compartmental systems described by

ẋi =
∑
j �=i

kjixj−
∑
l �=i

kilxi−qixi+biu, i = 1, . . . , n, (1)

where xi and the input u take nonnegative values,
kij , qi, bi ∈ R+ and at least one bi is positive (see
Fig. 1). Note that, in this case, fji = kjixj , f0i = biu
and fi0 = qixi, and it can be easily proved that the
system is positive, this is, if we consider an input u that
remains nonnegative, then the state variable also remains
nonnegative. Moreover, (1) can also be written in matrix
form as

ẋ = Ax + bu, (2)

where A (called compartmental matrix) is so that

aii = −qi −
∑
j �=i

kij and, if i �= j, aij = kji,

and b = (b1, b2, . . . , bn)T .
The total mass of the system in a given state x is

defined as M(x) =
∑n

i=1 xi. For an arbitrary positive
value M∗, the set ΩM∗ =

{
x ∈ R

n
+ : M(x) = M∗} of

all the points x in the state space with mass M∗ is called
an iso-mass.

An important issue in the context of the control of
compartmental systems is to design a control law which
yields a positive input that steers the system mass M(x)
to a desired value.

In [1], the following positive control law is proposed
to guarantee that the trajectories converge to a set ΩM∗ :

   b i   b j 

   q i    q j

to/from other 

compartments

to/from other 

compartments
k j i

k i j

i j

Fig. 1. Two compartments of a linear time-invariant compartmental
model, as described by (1).
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u(x) = max (0, ũ(x))
ũ(x) = (

∑
n

i=1 bi)
−1 (

∑
n

i=1 qixi + λ (M∗ − M(x))) ,
(3)

where λ is an arbitrary design parameter.
In order to state the corresponding theorem, we need

to introduce the following concept of full outflow con-
nectedness. A compartmental system (1) is said to be
fully outflow connected if at every state x there is a path
i → j → k → · · · → l with positive kij ’s from every
compartment i to some compartment l such that ql > 0
(see [1]).

Theorem 1: [1] Let (2) be a fully outflow connected
compartmental system. Then, for the closed loop system
(2)-(3) with arbitrary initial conditions x(0) ∈ R

n
+:

i) the iso-mass ΩM∗ is forward invariant;
ii) the state x(t) is bounded for all t > 0 and converges

to the iso-mass ΩM∗ .

The proof of this result is based on the application
of LaSalle’s invariance principle (see [5], pg.30), by
considering the Lyapunov function

V (x) =
1
2

(M∗ − M(x))2

of (2) on R
n
+.

In [8], the control law (3) was applied for the control
of the neuromuscular blockade of patients undergoing
surgery, by means of the infusion of atracurium. In
fact, it is possible to model this problem as a three
compartmental model that can be described as depicted in
Fig. 2, where u is the drug infusion dose administered in
the central compartment, and k12, k21, k13, q3 are positive
micro-rate constants and q1, q2 are nonnegative micro-rate
constantes that vary from patient to patient. In this case,
the set of equations (1) becomes


ẋ1 = −(k12 + k13 + q1)x1 + k21x2 + u
ẋ2 = k12x1 − (k21 + q2)x2

ẋ3 = k13x1 − q3x3

(4)

where x1, x2 and x3 are the drug amounts in the central,
peripheral and effect compartments, respectively. How-
ever, even after a satisfactory identification of the patients
characteristics, it was necessary to consider an additional
integrator, in order to achieve good results. This might be
explained by the fact that (contrary to what happens, for

   k 1 3

   q 1    q 2

k 2 1

k 1 2

Central Compartment 

(C1)

Peripheral Compartment 

(C2)
b 1=1

Effect Compartment 

(C3)

   q 3

Fig. 2. Compartmental model for the neuromuscular blockade effect
of the drug atracurium.

instance, with state feedback stabilisers, which are not
uniquely defined from the system matrices) the control
law (3) strongly depends on the system parameters. Since
parameter uncertainty is present not only in this case, but
in most of the applications, it is relevant to analyse the
robustness of that control law.

III. UNCERTAIN COMPARTMENTAL SYSTEMS

In this section, we analyse the performance of the
control law (3), proposed in [1], in the presence of
parameter uncertainties.

If we consider that we can measure precisely what is
injected from the outside into the system, the parameters
bi are not subject to uncertainties. On the other hand, since
the control law does not depend on the kij’s, we may
assume that the only uncertain parameters are q1, . . . , qn.
Therefore, we shall assume that a control law (3) is
designed for a nominal system

ẋ = (A + ∆A)x + bu, (5)

while the real system is given by

ẋ = Ax + bu, (6)

being

∆A = diag(−∆q1,−∆q2, . . . ,−∆qn)

the matrix of parameter uncertainties. Note that, in this
case, the control law (3) becomes

u(x) = max (0, ũ(x))
ũ(x) = (

∑
n

i=1 bi)
−1 (

∑
n

i=1 (qi + ∆qi)xi+
+λ (M∗ − M(x))) .

(7)

It turns out that, for suitable values of the design
parameter λ, when the control law (7) is applied to (6), the
asymptotical values of the system mass lay in an interval
which is related to M∗ as stated in the next theorem.

Theorem 2: Let (6) be a fully outflow connected com-
partmental system, ∆qmin = min {∆qi}, ∆qmax =
max {∆qi} and take the design parameter λ in (7) larger
than ∆qmax. Then, the state trajectories x(t) of the
closed loop system (6)-(7), with arbitrary initial condi-
tions x(0) ∈ R

n
+, converge to the forward invariant set

Ω =
{
x ∈ R

n
+ : M(x) ∈ I(M∗)

}
,

with I(M∗) =
[

λ
λ−∆qmin

M∗, λ
λ−∆qmax

M∗
]
.

Proof: Let Mmin = λ
λ−∆qmin

M∗ and Mmax =
λ

λ−∆qmax
M∗. Consider the function V : R

n → R defined
by

V (x) =




1
2

(
M(x) − Mmin

)2
if M(x) < Mmin

1
2

(
M(x) − Mmax

)2
if M(x) > Mmax

0 otherwise.
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Note that V is a Lyapunov function of the system on R
n
+

because it is continuous and V̇ (x) ≤ 0, ∀x ∈ R
n
+ (see

[5], pg.30). In fact, if x ∈ R
n
+,

V̇ (x) =




(
M(x) − Mmin

) dM(x)
dt if M(x) < Mmin(

M(x) − Mmax

) dM(x)
dt if M(x) > Mmax

0 otherwise

is nonpositive, as we next show.

• Suppose that M(x) < Mmin. Since
∑n

i=1 (qi + ∆qi)xi + λ (M∗ − M(x)) ≥
≥ ∑

n

i=1 qixi + ∆qminM(x) + λ (M∗ − M(x))
=

∑
n

i=1 qixi + (λ − ∆qmin)
(
Mmin − M(x)

)
> 0,

it follows that ũ(x) > 0. Thus,

u(x) = ũ(x)
= (

∑
n

i=1 bi)
−1 (

∑
n

i=1 (qi + ∆qi) xi+
+λ (M∗ − M(x))) .

In this case,
dM(x)

dt =
∑n

i=1 ∆qixi + λ (M∗ − M(x))
≥ ∆qminM(x) + λ (M∗ − M(x))
= (λ − ∆qmin)

(
Mmin − M(x)

)
> 0

and

V̇ (x) =
(
M(x) − Mmin

) dM(x)
dt

< 0.

• Suppose that M(x) > Mmax. If ũ(x) < 0, u(x) = 0
and

dM(x)
dt = −∑n

i=1 qixi ≤ 0.

Thus, in this case,

V̇ (x) =
(
M(x) − Mmax

) dM(x)
dt

≤ 0.

If ũ(x) ≥ 0, since u(x) = ũ(x), it follows that

dM(x)
dt =

∑n

i=1 ∆qixi + λ (M∗ − M(x)) .
≤ ∆qmaxM(x) + λ (M∗ − M(x))
= (λ − ∆qmax)

(
Mmax − M(x)

)
< 0

and

V̇ (x) =
(
M(x) − Mmax

) dM(x)
dt

< 0.

Applying LaSalle’s invariance principle (see [5], pg.30),
it turns out that x(t) converges to the largest invariant set
contained in{

x ∈ R
n
+ : V̇ (x) = 0

}
= I1 ∪ I2,

where
I1 =

{
x ∈ R

n
+ : M(x) ∈ I(M∗)

}

and

I2 =
{
x ∈ R

n
+ : u(x) = 0,

∑n

i=1 qixi = 0 and
M(x) > Mmax

}
.

It can be shown that the set I2 has no invariant subset.
Indeed, if this would be the case, u would be zero and
the assumption of full outflow connectedness would imply
that M(x) → 0, meaning that x would leave the subset
(see [1]). On the other hand, I1 is an invariant set, which
concludes the proof of the theorem.

Remark 3:

i) If ∆q1 = ∆q2 = . . . = ∆qn = ∆q, since
∆qmin = ∆qmax = ∆q, the state trajectory
x(t) converges to the iso-mass ΩM , with M =

λ
λ−∆q

M∗.
ii) When ∆qi = 0, i = 1, . . . , n, we recover the

result from Theorem 1.

Using the same kind of techniques as in Theorem 2, it
is possible to show that:

Proposition 4: Let (6) be a fully outflow connected
compartmental system. Then, the state trajectories x(t)
of the closed loop system (6)-(7), with arbitrary initial
conditions x(0) ∈ R

n
+, converge to the forward invariant

set
Ω̃ =

{
x ∈ R

n
+ : M(x) ∈ Ĩ(M∗)

}
,

where Ĩ(M∗) =
[

λ
λ+∆q M∗, λ

λ−∆q M∗
]

and ∆q =
max {|∆qi|}, if the design parameter λ is taken to be
larger than ∆q.

Note that, contrary to what happens with the set I(M∗)
in Theorem 2 (which may even not contain the value M∗),
the set Ĩ(M∗) in Proposition 4 is a neighborhood of M∗.
This allows to bound the absolute mass offset by

max
{
M∗ − λ

λ+∆q M∗, λ
λ−∆q M∗ − M∗

}
=

= ∆q
λ−∆qM∗,

leading the bound ∆q
λ−∆q for the relative mass offset.

Clearly, increasing the parameter λ contributes to increase
the robustness of the control law.

Remark 5: Note that other bounds for the relative
mass offset can be derived from set I(M∗), namely

max
{ |∆qmin|

λ−∆qmin
,

|∆qmax|
λ−∆qmax

}
.

IV. SIMULATIONS

In this section, some simulation examples are presented
for the neuromuscular blockade control. We consider that
the patient’s real model is given by (4), with the following
values for the parameters (units = min−1): k12 =
0.1928, k13 = 0.0017, k21 = 0.1556, q1 = 0.1047, q2 =
0, q3 = 0.0836.

Our aim is to stabilise the system mass on the value
M∗ = 1.1169 (corresponding to a 10% level of neuro-
muscular blockade), using the control law (7). We start
by taking the design parameter λ = 0.2.

In the first simulation, depicted in Fig. 3, it is assumed
that the nominal patient model coincides with the real
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one, i.e., ∆qi = 0, i = 1, 2, 3. As expected, the system
mass converges to M∗.

Fig. 4 shows the result of a simulation scenario, where
the ∆qi’s are taken to be all equal, namely ∆q1 = ∆q2 =
∆q3 = 0.03. In this case, illustrating Remark 3i), the
system mass reaches the set-point M = λ

λ−∆q
M∗ =

1.3141.
The simulations in Fig. 5 correspond to the case where

the ∆qi’s are different. The three illustrated cases corre-
spond to the following situations: M∗ lies outside I(M∗),
M∗ lies in the interval I(M∗) and M∗ coincides with one
of the bounds of this interval.

Fig. 6 illustrates the case where not only the qi’s are
subject to uncertainties, but also the other parameters,
showing that the controller performance only depends on
the ∆qi’s.

Finally, Fig. 7 illustrates the behavior of the mass of
the controlled system for different values of the parameter
λ, under a fixed uncertainty for the system parameters.
According to the definition of I(M∗), one observes that
the increasing of λ corresponds to the decrease of the
final mass offset.
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Fig. 3. Simulation for the neuromuscular blockade control, considering
∆qi = 0, i = 1, 2, 3.
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Fig. 4. Simulation for the neuromuscular blockade control, considering
∆qi = 0.03, i = 1, 2, 3.
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Fig. 5. Simulations for the neuromuscular blockade control. (a) Simula-
tion with ∆q1 = 0.08, ∆q2 = 0.07 and ∆q3 = 0.05; the system mass
lays asymptotically in the interval I(M∗) = [1.4893, 1.8616]. (b) Sim-
ulation with ∆q1 = −0.09, ∆q2 = 0.02 and ∆q3 = 0.01; the system
mass lays asymptotically in the interval I(M∗) = [0.7703, 1.2411] .
(c) Simulation with ∆q1 = −0.08, ∆q2 = 0 and ∆q3 = −0.01;
the system mass lays asymptotically in the interval I(M∗) =
[0.7978, 1.1169] .
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Fig. 6. Simulations for the neuromuscular blockade control when all
the parameters are subject to uncertainties. These simulations where
obtained considering the same ∆qi’s as in the simulations in Fig. 5
and other parameters uncertainties, namely ∆k13 = 0.02, ∆k12 =
0.04 and ∆k21 = −0.03. Notice that the simulation results are exactly
the same as the corresponding ones in Fig. 5.
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Fig. 7. Simulations for the neuromuscular blockade control. These
simulations where obtained considering ∆q1 = −0.02, ∆q2 =
0.01 and ∆q3 = −0.03, and different values of λ. (a) Simulation for
λ = 0.02. (b) Simulation for λ = 0.2. (c) Simulation for λ = 2.
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CONCLUSION

This paper presents a study of the performance of
the control law (3) proposed in [1] when applied to the
mass control of compartmental systems with parameters
uncertainties.

It turns out that the asymptotical mass values lay in
an interval whose limits can be expressed in terms of the
uncertainty bounds. This allows to derive bounds for the
asymptotical mass offset.

In order to illustrate the obtained results, simulations
for the case of neuromuscular blockade automatic control
by atracurium infusion were carried out. These simula-
tions suggest that, in this case, the asymptotical values
of the drug mass reach a constant value in the afore-
mentioned interval. This issue is currently under further
investigation.
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