279 research outputs found

    Cell-cell communication mediated by the CAR subgroup of immunoglobulin cell adhesion molecules in health and disease

    Get PDF
    The immunoglobulin superfamily represents a diverse set of cell-cell contact proteins and includes well-studied members such as NCAM1, DSCAM, L1 or the contactins which are strongly expressed in the nervous system. In this review we put our focus on the biological function of a less understood subgroup of Ig-like proteins composed of CAR (coxsackievirus and adenovirus receptor), CLMP (CAR-like membrane protein) and BT-IgSF (brain and testis specific immunoglobulin superfamily). The CAR-related proteins are type I transmembrane proteins containing an N-terminal variable (V-type) and a membrane proximal constant (C2-type) Ig domain in their extracellular region which are implicated in homotypic adhesion. They are highly expressed during embryonic development in a variety of tissues including the nervous system whereby in adult stages the protein level of CAR and CLMP decreases, only BT-IgSF expression increases within age. CAR-related proteins are concentrated at specialized cell-cell communication sites such as gap or tight junctions and are present at the plasma membrane in larger protein complexes. Considerable progress has been made on the molecular structure and interactions of CAR while research on CLMP and BT-IgSF is at an early stage. Studies on mouse mutants revealed biological functions of CAR in the heart and for CLMP in the gastrointestinal and urogenital systems. Furthermore, CAR and BT-IgSF appear to regulate synaptic function in the hippocampus

    Multimodal nonlinear imaging of atherosclerotic plaques differentiation of triglyceride and cholesterol deposits

    Get PDF
    Cardiovascular diseases in general and atherothrombosis as the most common of its individual disease entities is the leading cause of death in the developed countries. Therefore, visualization and characterization of inner arterial plaque composition is of vital diagnostic interest, especially for the early recognition of vulnerable plaques. Established clinical techniques provide valuable morphological information but cannot deliver information about the chemical composition of individual plaques. Therefore, spectroscopic imaging techniques have recently drawn considerable attention. Based on the spectroscopic properties of the individual plaque components, as for instance different types of lipids, the composition of atherosclerotic plaques can be analyzed qualitatively as well as quantitatively. Here, we compare the feasibility of multimodal nonlinear imaging combining two-photon fluorescence (TPF), coherent anti-Stokes Raman scattering (CARS) and second-harmonic generation (SHG) microscopy to contrast composition and morphology of lipid deposits against the surrounding matrix of connective tissue with diffraction limited spatial resolution. In this contribution, the spatial distribution of major constituents of the arterial wall and atherosclerotic plaques like elastin, collagen, triglycerides and cholesterol can be simultaneously visualized by a combination of nonlinear imaging methods, providing a powerful label-free complement to standard histopathological methods with great potential for in vivo application

    Local and global modes of drug action in biochemical networks

    Get PDF
    It becomes increasingly accepted that a shift is needed from the traditional target-based approach of drug development to an integrated perspective of drug action in biochemical systems. We here present an integrative analysis of the interactions between drugs and metabolism based on the concept of drug scope. The drug scope represents the set of metabolic compounds and reactions that are potentially affected by a drug. We constructed and analyzed the scopes of all US approved drugs having metabolic targets. Our analysis shows that the distribution of drug scopes is highly uneven, and that drugs can be classified into several categories based on their scopes. Some of them have small scopes corresponding to localized action, while others have large scopes corresponding to potential large-scale systemic action. These groups are well conserved throughout different topologies of the underlying metabolic network. They can furthermore be associated to specific drug therapeutic properties

    Non-L\'evy mobility patterns of Mexican Me'Phaa peasants searching for fuelwood

    Full text link
    We measured mobility patterns that describe walking trajectories of individual Me'Phaa peasants searching and collecting fuelwood in the forests of "La Monta\~na de Guerrero" in Mexico. These one-day excursions typically follow a mixed pattern of nearly-constant steps when individuals displace from their homes towards potential collecting sites and a mixed pattern of steps of different lengths when actually searching for fallen wood in the forest. Displacements in the searching phase seem not to be compatible with L\'evy flights described by power-laws with optimal scaling exponents. These findings however can be interpreted in the light of deterministic searching on heavily degraded landscapes where the interaction of the individuals with their scarce environment produces alternative searching strategies than the expected L\'evy flights. These results have important implications for future management and restoration of degraded forests and the improvement of the ecological services they may provide to their inhabitants.Comment: 15 pages, 4 figures. First version submitted to Human Ecology. The final publication will be available at http://www.springerlink.co

    Improved Constraints on Northern Extratropical CO2 Fluxes Obtained by Combining Surface-Based and Space-Based Atmospheric CO2 Measurements

    Get PDF
    Abstract Top-down estimates of CO2 fluxes are typically constrained by either surface-based or space-based CO2 observations. Both of these measurement types have spatial and temporal gaps in observational coverage that can lead to differences in inferred fluxes. Assimilating both surface-based and space-based measurements concurrently in a flux inversion framework improves observational coverage and reduces sampling related artifacts. This study examines the consistency of flux constraints provided by these different observations and the potential to combine them by performing a series of 6-year (2010?2015) CO2 flux inversions. Flux inversions are performed assimilating surface-based measurements from the in situ and flask network, measurements from the Total Carbon Column Observing Network (TCCON), and space-based measurements from the Greenhouse Gases Observing Satellite (GOSAT), or all three data sets combined. Combining the data sets results in more precise flux estimates for subcontinental regions relative to any of the data sets alone. Combining the data sets also improves the accuracy of the posterior fluxes, based on reduced root-mean-square differences between posterior flux-simulated CO2 and aircraft-based CO2 over midlatitude regions (0.33?0.56?ppm) in comparison to GOSAT (0.37?0.61?ppm), TCCON (0.50?0.68?ppm), or in situ and flask measurements (0.46?0.56?ppm) alone. These results suggest that surface-based and GOSAT measurements give complementary constraints on CO2 fluxes in the northern extratropics and can be combined in flux inversions to improve constraints on regional fluxes. This stands in contrast with many earlier attempts to combine these data sets and suggests that improvements in the NASA Atmospheric CO2 Observations from Space (ACOS) retrieval algorithm have significantly improved the consistency of space-based and surface-based flux constraints

    Perdeuteration of cholesterol for neutron scattering applications using recombinant Pichia pastoris

    Get PDF
    Deuteration of biomolecules has a great impact on both quality and scope of neutron scattering experiments. Cholesterol is a major component of mammalian cells, where it plays a critical role in membrane permeability, rigidity and dynamics, and contributes to specific membrane structures such as lipid rafts. Cholesterol is the main cargo in low and high-density lipoprotein complexes (i.e. LDL, HDL) and is directly implicated in several pathogenic conditions such as coronary artery disease which leads to 17 million deaths annually. Neutron scattering studies on membranes or lipid-protein complexes exploiting contrast variation have been limited by the lack of availability of fully deuterated biomolecules and especially perdeuterated cholesterol. The availability of perdeuterated cholesterol provides a unique way of probing the structural and dynamical properties of the lipoprotein complexes that underly many of these disease conditions. Here we describe a procedure for in vivo production of perdeuterated recombinant cholesterol in lipid-engineered Pichia pastoris. Using flask and fed-batch fermenter cultures in deuterated minimal medium perdeuteration of the purified cholesterol was verified by mass spectrometry and its use in a neutron scattering study was demonstrated using neutron reflectometry
    • …
    corecore