56 research outputs found

    Mucoid degeneration of the anterior cruciate Ligament: a case report

    Get PDF
    We report a case of mucoid degeneration of the anterior cruciate ligament (ACL). Mucoid degeneration of the ACL is a very rare cause of knee pain. There have been only some reported cases of mucoid degeneration of the ACL in the English literature. We reviewed previous reports and summarized clinical features and symptoms, including those found in our case. Magnetic Resonance Imaging is the most useful tool for differentiating mucoid degeneration of the ACL from an intraligamentous ganglion or other lesions in the knee joint. If this disease is considered preoperatively, it can be diagnosed easily based on characteristic findings.Key words: Anterior cruciate ligament, arthroscopy, Magnetic Resonance Imaging, mucoid degeneratio

    Molecular characterization of corona radiata cells from patients with diminished ovarian reserve using microarray and microfluidic-based gene expression profiling

    Get PDF
    BACKGROUND: Diminished ovarian reserve (DOR) is one of the causes of infertility in young women. In this prospective study, gene expression profiling (GEP) of corona radiata cells (CRC) was performed to identify genes deregulated in DOR patients. METHODS: Microarray-based GEP of CRC isolated from eight women undergoing IVF was performed to identify genes differentially expressed between patients with normal ovarian reserve and DOR patients. Microfluidic-based quantitative RT-PCR assays were used to validate selected transcripts on 40 independent patients. A principal component analysis was used to identify more homogeneous subgroups of DOR patients. In silico analyses focusing on cis-regulation were performed to refine the interactions between patient\u27s biological characteristics and their GEP. RESULTS: Forty-eight transcripts were differentially expressed, including CXXC finger protein 5 (CXXC5), forkhead box C1 (FOXC1) (down-regulated in DOR) as well as connective tissue growth factor (CTGF), follistatin-like 3 (FSTL3), prostaglandin-endoperoxide synthase 2 (PTGS2) and suppressor of cytokine signaling 2 (SOCS2) (up-regulated in DOR). According to these transcripts, two DOR patients\u27 subgroups (DOR Gr1 and Gr2) were identified. In DOR Gr2 patients, C-terminal domain 2 (CITED2), CTGF, growth arrest-specific 1 (GAS1), insulin receptor substrate 2 (IRS2), PTGS2, SOCS2 and Versican (VCAN) were expressed at significantly higher levels and CXXC5, FOXC1, guanylate-binding protein 2 (GBP2) and zinc finger MIZ-domain containing 1 (ZMIZ1) at significantly lower levels. Higher baseline estradiol (E(2)) levels were observed in DOR Gr2 patients (P < 0.006). The in silico analyses suggested that all 11 genes differentially expressed between DOR Gr1 and DOR Gr2 subgroups could be transcriptional targets of estrogen. CONCLUSIONS: Despite small sample size limitations, 12 genes deregulated in the CRC of DOR patients were identified, which could be involved in DOR pathogenesis. A DOR patient\u27s subgroup with high baseline E(2) levels and deregulated estrogen-responsive genes was also identified

    Relationship between diminished ovarian reserve and mitochondrial biogenesis in cumulus cells

    Get PDF
    STUDY QUESTION: What part do mitochondria play in cases of diminished ovarian reserve (DOR)? SUMMARY ANSWER: Mitochondrial biogenesis in cumulus cells may be linked with impaired oocyte competence in patients with DOR. WHAT IS KNOWN ALREADY: DOR, one of the causes of infertility even in young women, is characterized by the depletion of the ovarian pool associated with a decline in oocyte competence. Mitochondria, which play a role in oocyte quality, could be involved in the pathogenesis of DOR. The study of cumulus cells offers an interesting non-invasive approach for evaluating oocyte quality and the metabolic processes on which it depends. If mitochondrial dysfunction is involved in DOR, it is likely to have an impact on the functioning of cumulus cells. STUDY DESIGN, SIZE, DURATION: This is an observational study of 74 immature oocyte-cumulus complexes retrieved from 47 women undergoing in vitro fertilization with intracytoplasmic sperm injection at the University Hospital of Angers, France, from March 2013 to March 2014. The women were divided into two groups: one group included 26 women with DOR, and the other, which included 21 women with a normal ovarian reserve (NOR), served as a control group. PARTICIPANTS/MATERIALS, SETTINGS, METHODS: The oocyte mitochondrial content and the average mitochondrial content of the cumulus cells were assessed by mitochondrial (mt)DNA quantification using a quantitative real-time PCR technique. Microfluidic-based quantitative RT-PCR assays were used to quantify the expression of 13 genes involved in mitochondrial functions such as apoptosis and antioxidant activity or in mitochondrial biogenesis. We used orthogonal partial least-squares discriminant analysis (OPLS-DA) to distinguish between the DOR group and the NOR group of patients, and an OPLS model to predict the value of the oocyte mtDNA content that could be used as a critical marker of oocyte quality. MAIN RESULTS AND THE ROLE OF CHANCE: The OPLS-DA model showed a good predictive capability (Q2 = 0.543). Using the variable importance in projection (VIP) metric we found three mitochondrial variables distinguishing the DOR group from the NOR group of patients, i.e. the oocyte mtDNA content (VIP = 0.92), the cumulus cell mtDNA content (VIP = 0.95) and the expression in cumulus cells of peroxisome proliferator-activated receptor γ coactivator 1 alpha (PPARGC-1A) (VIP = 1.10), all of which were lower in the DOR group than in the NOR group of patients. The OPLS model was able to satisfactorily predict the oocyte mtDNA content in only the NOR group of patients (Q2 = 0.506). We found four new variables positively linked to the oocyte mitochondrial mass, i.e. the cumulus cell mtDNA content (VIP = 1.19), and the expression in cumulus cells of three factors of mitochondrial biogenesis: polymerase gamma (POLG) (VIP = 2.13), optic atrophy 1 (OPA1) (VIP = 1.89) and the transcription factor associated with mitochondria (TFAM) (VIP = 1.32). LIMITATIONS, REASONS OF CAUTION: This is a descriptive study. Because of ethical concerns in human clinical practice, this study has been performed only on immature oocytes and corresponding cumulus cells, which are usually discarded during in vitro fertilization procedures. WIDER IMPLICATIONS OF THE FINDINGS: Cumulus cells may govern mitochondrial biogenesis, creating an adequate oocyte mitochondrial pool to promote embryonic development. The alteration of this process in patients with DOR may account for the impairment of oocyte quality. This suggests that some mitochondrial characteristics of cumulus cells may serve as indicators of oocyte competence and that oocyte quality may be improved by products enhancing mitochondrial biogenesis. STUDY FUNDING/COMPETING INTERESTS: This work was supported by a grant from the University Hospital of Angers, France: \u27Appel d\u27offre interne à la recherche 2014\u27. TRIAL REGISTRATION NUMBER: N/A

    Genetic Relations Between the Aves Ridge and the Grenada Back-Arc Basin, East Caribbean Sea

    Get PDF
    The Grenada Basin separates the active Lesser Antilles Arc from the Aves Ridge, described as a Cretaceous‐Paleocene remnant of the “Great Arc of the Caribbean.” Although various tectonic models have been proposed for the opening of the Grenada Basin, the data on which they rely are insufficient to reach definitive conclusions. This study presents, a large set of deep‐penetrating multichannel seismic reflection data and dredge samples acquired during the GARANTI cruise in 2017. By combining them with published data including seismic reflection data, wide‐angle seismic data, well data and dredges, we refine the understanding of the basement structure, depositional history, tectonic deformation and vertical motions of the Grenada Basin and its margins as follows: (1) rifting occurred during the late Paleocene‐early Eocene in a NW‐SE direction and led to seafloor spreading during the middle Eocene; (2) this newly formed oceanic crust now extends across the eastern Grenada Basin between the latitude of Grenada and Martinique; (3) asymmetrical pre‐Miocene depocenters support the hypothesis that the southern Grenada Basin originally extended beneath the present‐day southern Lesser Antilles Arc and probably partly into the present‐day forearc before the late Oligocene‐Miocene rise of the Lesser Antilles Arc; and (4) the Aves Ridge has subsided along with the Grenada Basin since at least the middle Eocene, with a general subsidence slowdown or even an uplift during the late Oligocene, and a sharp acceleration on its southeastern flank during the late Miocene. Until this acceleration of subsidence, several bathymetric highs remained shallow enough to develop carbonate platforms

    Robust physical methods that enrich genomic regions identical by descent for linkage studies: confirmation of a locus for osteogenesis imperfecta

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The monogenic disease osteogenesis imperfecta (OI) is due to single mutations in either of the collagen genes ColA1 or ColA2, but within the same family a given mutation is accompanied by a wide range of disease severity. Although this phenotypic variability implies the existence of modifier gene variants, genome wide scanning of DNA from OI patients has not been reported. Promising genome wide marker-independent physical methods for identifying disease-related loci have lacked robustness for widespread applicability. Therefore we sought to improve these methods and demonstrate their performance to identify known and novel loci relevant to OI.</p> <p>Results</p> <p>We have improved methods for enriching regions of identity-by-descent (IBD) shared between related, afflicted individuals. The extent of enrichment exceeds 10- to 50-fold for some loci. The efficiency of the new process is shown by confirmation of the identification of the Col1A2 locus in osteogenesis imperfecta patients from Amish families. Moreover the analysis revealed additional candidate linkage loci that may harbour modifier genes for OI; a locus on chromosome 1q includes COX-2, a gene implicated in osteogenesis.</p> <p>Conclusion</p> <p>Technology for physical enrichment of IBD loci is now robust and applicable for finding genes for monogenic diseases and genes for complex diseases. The data support the further investigation of genetic loci other than collagen gene loci to identify genes affecting the clinical expression of osteogenesis imperfecta. The discrimination of IBD mapping will be enhanced when the IBD enrichment procedure is coupled with deep resequencing.</p

    The mammalian centrosome and its functional significance

    Get PDF
    Primarily known for its role as major microtubule organizing center, the centrosome is increasingly being recognized for its functional significance in key cell cycle regulating events. We are now at the beginning of understanding the centrosome’s functional complexities and its major impact on directing complex interactions and signal transduction cascades important for cell cycle regulation. The centrosome orchestrates entry into mitosis, anaphase onset, cytokinesis, G1/S transition, and monitors DNA damage. Recently, the centrosome has also been recognized as major docking station where regulatory complexes accumulate including kinases and phosphatases as well as numerous other cell cycle regulators that utilize the centrosome as platform to coordinate multiple cell cycle-specific functions. Vesicles that are translocated along microtubules to and away from centrosomes may also carry enzymes or substrates that use centrosomes as main docking station. The centrosome’s role in various diseases has been recognized and a wealth of data has been accumulated linking dysfunctional centrosomes to cancer, Alstrom syndrome, various neurological disorders, and others. Centrosome abnormalities and dysfunctions have been associated with several types of infertility. The present review highlights the centrosome’s significant roles in cell cycle events in somatic and reproductive cells and discusses centrosome abnormalities and implications in disease

    Données histophysiologiques sur le développement post-embryonnaire d'un insecte Trichoptère (Phryganea varia Fab.)

    No full text
    Par l'application conjointe des techniques de la cytochimie et de l'analyse par spectographie des rayons X, la présence de divers cations (Ca, Mg, Mn, Zn et Fe) a été décelée dans de nombreux organes de P. varia. Ces éléments peuvent être liés à des MPSA (glandes salivaires), associés à des pigments (oeil, hypoderme) ou constituer des concrétions de phosphates (mésentéron, tissu adipeux, tubes de Malpighi). La distribution et l'abondance des métaux ainsi que l'évolution des teneurs en produits de réserves ont été envisagées au cours du développement post-embryonnaire et comparées aux données obtenues dans divers ordres d'Insectes terrestres. La vie en milieu aquatique a pour conséquences une absence d'accumulation de potassium et de déchets puriques. Il semble que la formation de sels minéraux soit nécessaire à certains échanges ioniques chez cet Insecte qui n'a pas à résoudre de problème de l'économie de l'eau pendant une grande partie de sa vie

    μXANES study of iron redox state in serpentine during oceanic serpentinization

    No full text
    International audienceSerpentinization of ultramafic rocks at mid-ocean ridges generates significant amounts of H2, CH4, and supports specific biological communities. The abiotic H2 production is attributed to the reduction of H2O during serpentinization, which balances oxidation of ferrous iron contained in primary minerals (mainly olivines and pyroxenes) to ferric iron contained in secondary minerals (mainly serpentines and magnetite). Magnetite has thus far been considered as the sole Fe3 +-carrier for estimating bulk H2 production, notably because the valence of iron in serpentine minerals and its relationship with both magnetite abundance and serpentinization degree are usually not determined. We show that the serpentine contribution to the Fe and Fe3 + budget has a significant effect on H2 production. We performed μ-XANES analysis at the Fe K-edge on thin sections of peridotites with various degrees of serpentinization from ODP Leg 153 (MARK region, 23°N). Fe3 +/FeTot in oceanic serpentines is highly variable (from ~ 0.2 to 1) at the thin section scale, and it is related non-linearly to the local degree of serpentinization. A typical value of 0.7 is observed above 60% serpentinization. The highest values of Fe3 +/FeTot observed within or close to late veins suggest that the Fe3 +/FeTot in serpentine record the local water-rock (W/R) ratio, as previously proposed from thermodynamic modeling. We estimate that the (W/R) ratio increased from ~ 0.6 to 25 during serpentinization at MARK, and locally reached ~ 100 in veins. Mass balance calculations combining all mineral and bulk rock analyses provide the distribution of Fe and Fe3 + as serpentinization progresses. Serpentine dominates the Fe3 + budget of the rock over magnetite during the first 75% of serpentinization, contributing up to 80% of the total Fe3 +. At later stages, serpentine contribution to the Fe3 + budget decreases down to ~ 20%, while magnetite formation exponentially increases. Iron transfer from serpentine to magnetite balances the bulk Fe3 + content of the rock that increases almost linearly with the advance of the reaction. Formation of serpentine accounts for the majority of Fe3 + and H2 production at early stages of serpentinization at a depth > 2 km at MARK where the concentration of H2 can reach more than 100 mM according to the low W/R. H2 production values and depths can vary from one site to another, depending on the evolution of the temperature, W/R ratio, inlet fluid composition, and favored formation of serpentine vs. magnetite. At MARK, Fe3 + in serpentine represents 15-27% of the total Fe contained in a rock serpentinized to more than 80%, and accounts for 25% of the total H2 production that is estimated at 325-335 mmol/kg of rock. The absence of magnetite does not necessarily mean a negligible H2 production, even at low T conditions (< 150-200°C) under which the Fe- and Fe3 +-richest serpentines have been observed. Serpentine minerals are important Fe3 +-carrier in the altered ocean lithosphere, and may affect mantle redox state while dehydrating at depth in subduction zones

    Mu XANES study of iron redox state in serpentine during oceanic serpentinization

    No full text
    Serpentinization of ultramafic rocks at mid-ocean ridges generates significant amounts of H-2, CH4, and supports specific biological communities. The abiotic H-2 production is attributed to the reduction of H2O during serpentinization, which balances oxidation of ferrous iron contained in primary minerals (mainly olivines and pyroxenes) to ferric iron contained in secondary minerals (mainly serpentines and magnetite). Magnetite has thus far been considered as the sole Fe3+-carrier for estimating bulk H-2 production, notably because the valence of iron in serpentine minerals and its relationship with both magnetite abundance and serpentinization degree are usually not determined. We show that the serpentine contribution to the Fe and Fe3+ budget has a significant effect on H-2 production. We performed mu-XANES analysis at the Fe K-edge on thin sections of peridotites with various degrees of serpentinization from ODP Leg 153 (MARK region, 23 degrees N). Fe3+/Fe-Tot in oceanic serpentines is highly variable (from similar to 0.2 to 1) at the thin section scale, and it is related non-linearly to the local degree of serpentinization. A typical value of 0.7 is observed above 60% serpentinization. The highest values of Fe3+/Fe-Tot observed within or close to late veins suggest that the Fe3+/Fe-Tot in serpentine record the local water-rock (W/R) ratio, as previously proposed from thermodynamic modeling. We estimate that the (W/R) ratio increased from similar to 0.6 to 25 during serpentinization at MARK, and locally reached similar to 100 in veins. Mass balance calculations combining all mineral and bulk rock analyses provide the distribution of Fe and Fe3+ as serpentinization progresses. Serpentine dominates the Fe3+ budget of the rock over magnetite during the first 75% of serpentinization, contributing up to 80% of the total Fe3+. At later stages, serpentine contribution to the Fe3+ budget decreases down to similar to 20%, while magnetite formation exponentially increases. Iron transfer from serpentine to magnetite balances the bulk Fe3+ content of the rock that increases almost linearly with the advance of the reaction. Formation of serpentine accounts for the majority of Fe3+ and H-2 production at early stages of serpentinization at a depth >2 km at MARK where the concentration of H-2 can reach more than 100 mM according to the low W/R. H-2 production values and depths can vary from one site to another, depending on the evolution of the temperature, W/R ratio, inlet fluid composition, and favored formation of serpentine vs. magnetite. At MARK, Fe3+ in serpentine represents 15-27% of the total Fe contained in a rock serpentinized to more than 80%, and accounts for 25% of the total H-2 production that is estimated at 325-335 mmol/kg of rock. The absence of magnetite does not necessarily mean a negligible H-2 production, even at low T conditions (<150-200 degrees C) under which the Fe- and Fe3+-richest serpentines have been observed. Serpentine minerals are important Fe3+-carrier in the altered ocean lithosphere, and may affect mantle redox state while dehydrating at depth in subduction zones
    corecore