62 research outputs found

    Tolerogenic dendritic cells generated with dexamethasone and vitamin D3 regulate rheumatoid arthritis CD4<sup>+</sup> T cells partly via transforming growth factor-β1

    Get PDF
    Tolerogenic dendritic cells (tolDC) are a new immunotherapeutic tool for the treatment of rheumatoid arthritis (RA) and other autoimmune disorders. We have established a method to generate stable tolDC by pharmacological modulation of human monocyte‐derived DC. These tolDC exert potent pro‐tolerogenic actions on CD4(+) T cells. Lack of interleukin (IL)−12p70 production is a key immunoregulatory attribute of tolDC but does not explain their action fully. Here we show that tolDC express transforming growth factor (TGF)‐β1 at both mRNA and protein levels, and that expression of this immunoregulatory cytokine is significantly higher in tolDC than in mature monocyte‐derived DC. By inhibiting TGF‐β1 signalling we demonstrate that tolDC regulate CD4(+) T cell responses in a manner that is at least partly dependent upon this cytokine. Crucially, we also show that while there is no significant difference in expression of TGF‐βRII on CD4(+) T cells from RA patients and healthy controls, RA patient CD4(+) T cells are measurably less responsive to TGF‐β1 than healthy control CD4(+) T cells [reduced TGF‐β‐induced mothers against decapentaplegic homologue (Smad)2/3 phosphorylation, forkhead box protein 3 (FoxP3) expression and suppression of (IFN)‐γ secretion]. However, CD4(+) T cells from RA patients can, nonetheless, be regulated efficiently by tolDC in a TGF‐β1‐dependent manner. This work is important for the design and development of future studies investigating the potential use of tolDC as a novel immunotherapy for the treatment of RA

    The Acute Environment, Rather than T Cell Subset Pre-Commitment, Regulates Expression of the Human T Cell Cytokine Amphiregulin

    Get PDF
    Cytokine expression patterns of T cells can be regulated by pre-commitment to stable effector phenotypes, further modification of moderately stable phenotypes, and quantitative changes in cytokine production in response to acute signals. We showed previously that the epidermal growth factor family member Amphiregulin is expressed by T cell receptor-activated mouse CD4 T cells, particularly Th2 cells, and helps eliminate helminth infection. Here we report a detailed analysis of the regulation of Amphiregulin expression by human T cell subsets. Signaling through the T cell receptor induced Amphiregulin expression by most or all T cell subsets in human peripheral blood, including naive and memory CD4 and CD8 T cells, Th1 and Th2 in vitro T cell lines, and subsets of memory CD4 T cells expressing several different chemokine receptors and cytokines. In these different T cell types, Amphiregulin synthesis was inhibited by an antagonist of protein kinase A, a downstream component of the cAMP signaling pathway, and enhanced by ligands that increased cAMP or directly activated protein kinase A. Prostaglandin E2 and adenosine, natural ligands that stimulate adenylyl cyclase activity, also enhanced Amphiregulin synthesis while reducing synthesis of most other cytokines. Thus, in contrast to mouse T cells, Amphiregulin synthesis by human T cells is regulated more by acute signals than pre-commitment of T cells to a particular cytokine pattern. This may be appropriate for a cytokine more involved in repair than attack functions during most inflammatory responses

    RSPO3 impacts body fat distribution and regulates adipose cell biology in vitro

    Get PDF
    Fat distribution is an independent cardiometabolic risk factor. However, its molecular and cellular underpinnings remain obscure. Here we demonstrate that two independent GWAS signals at RSPO3, which are associated with increased body mass index-adjusted waist-to-hip ratio, act to specifically increase RSPO3 expression in subcutaneous adipocytes. These variants are also associated with reduced lower-body fat, enlarged gluteal adipocytes and insulin resistance. Based on human cellular studies RSPO3 may limit gluteofemoral adipose tissue (AT) expansion by suppressing adipogenesis and increasing gluteal adipocyte susceptibility to apoptosis. RSPO3 may also promote upper-body fat distribution by stimulating abdominal adipose progenitor (AP) proliferation. The distinct biological responses elicited by RSPO3 in abdominal versus gluteal APs in vitro are associated with differential changes in WNT signalling. Zebrafish carrying a nonsense rspo3 mutation display altered fat distribution. Our study identifies RSPO3 as an important determinant of peripheral AT storage capacity

    Synovial CD4+ T-cell-derived GM-CSF supports the differentiation of an inflammatory dendritic cell population in rheumatoid arthritis

    Get PDF
    OBJECTIVE: A population of synovial inflammatory dendritic cells (infDCs) has recently been identified in rheumatoid arthritis (RA) and is thought to be monocyte-derived. Here, we investigated the role and source of granulocyte macrophage-colony-stimulating factor (GM-CSF) in the differentiation of synovial infDC in RA. METHODS: Production of GM-CSF by peripheral blood (PB) and synovial fluid (SF) CD4+ T cells was assessed by ELISA and flow cytometry. In vitro CD4+ T-cell polarisation experiments were performed with T-cell activating CD2/CD3/CD28-coated beads in the absence or presence of pro-Th1 or pro-Th17 cytokines. CD1c+ DC and CD16+ macrophage subsets were flow-sorted and analysed morphologically and functionally (T-cell stimulatory/polarising capacity). RESULTS: RA-SF CD4+ T cells produced abundant GM-CSF upon stimulation and significantly more than RA-SF mononuclear cells depleted of CD4+ T cells. GM-CSF-producing T cells were significantly increased in RA-SF compared with non-RA inflammatory arthritis SF, active RA PB and healthy donor PB. GM-CSF-producing CD4+ T cells were expanded by Th1-promoting but not Th17-promoting conditions. Following coculture with RA-SF CD4+ T cells, but not healthy donor PB CD4+ T cells, a subpopulation of monocytes differentiated into CD1c+ infDC; a process dependent on GM-CSF. These infDC displayed potent alloproliferative capacity and enhanced GM-CSF, interleukin-17 and interferon-γ production by CD4+ T cells. InfDC with an identical phenotype to in vitro generated cells were significantly enriched in RA-SF compared with non-RA-SF/tissue/PB. CONCLUSIONS: We demonstrate a therapeutically tractable feedback loop of GM-CSF secreted by RA synovial CD4+ T cells promoting the differentiation of infDC with potent capacity to induce GM-CSF-producing CD4+ T cells

    Predicting major bleeding in patients with noncardioembolic stroke on antiplatelets

    Get PDF
    Objective: To develop and externally validate a prediction model for major bleeding in patients with a TIA or ischemic stroke on antiplatelet agents. Methods: We combined individual patient data from 6 randomized clinical trials (CAPRIE, ESPS-2, MATCH, CHARISMA, ESPRIT, and PRoFESS) investigating antiplatelet therapy after TIA or ischemic stroke. Cox regression analyses stratified by trial were performed to study the association between predictors and major bleeding. A risk prediction model was derived and validated in the PERFORM trial. Performance was assessed with the c statistic and calibration plots. Results: Major bleeding occurred in 1,530 of the 43,112 patients during 94,833 person-years of follow-up. The observed 3-year risk of major bleeding was 4.6% (95% confidence interval [CI] 4.4%–4.9%). Predictors were male sex, smoking, type of antiplatelet agents (aspirin-clopidogrel), outcome on modified Rankin Scale ≥3, prior stroke, high blood pressure, lower body mass index, elderly, Asian ethnicity, and diabetes (S2TOP-BLEED). The S2TOP-BLEED score had a c statistic of 0.63 (95% CI 0.60–0.64) and showed good calibration in the development data. Major bleeding risk ranged from 2% in patients aged 45–54 years without additional risk factors to more than 10% in patients aged 75–84 years with multiple risk factors. In external validation, the model had a c statistic of 0.61 (95% CI 0.59–0.63) and slightly underestimated major bleeding risk. Conclusions: The S2TOP-BLEED score can be used to estimate 3-year major bleeding risk in patients with a TIA or ischemic stroke who use antiplatelet agents, based on readily available characteristics. The discriminatory performance may be improved by identifying stronger predictors of major bleeding

    Enhanced prostaglandin E2 production by monocytes in atopic dermatitis (AD) is not accompanied by enhanced production of IL-6, IL-10 or IL-12

    No full text
    AD is associated with a bias of the T helper cells to show increased IL-4 and reduced interferon-gamma (IFN-γ) production. The production of IFN-γ and IL-4 and the development of Th cells into either high IFN-γ or high IL-4 producers is strongly influenced by factors produced by antigen-presenting cells (APC), like IL-12 and prostaglandin E2 (PGE2). IL-12 selectively enhances IFN-γ production and favours the development of IFN-γ-producing Th cells, whereas PGE2 selectively inhibits IFN-γ production by Th cells. The aim of this study was to test whether the increased IL-4/IFN-γ production ratio by Th cells in AD can be explained by an increased PGE2/IL-12 production ratio by the APC. Monocytes were used as APC source. PGE2 and IL-12 production by lipopolysaccharide (LPS)-stimulated monocytes from 12 AD patients and 12 non-atopic controls was determined using two complementary experimental systems, whole blood cultures and purified monocytes. In addition, we determined IL-6 production as a measure of monocyte activation, and IL-10 production because IL-12 production by monocytes is highly influenced by endogenously produced IL-10. The monocytes from AD patients showed normal production levels of IL-6 and IL-10, a two-fold, but non-significant decrease in IL-12 production, and a significantly (three-fold) higher PGE2 production than those from non-atopic controls. Here we show for the first time that enhanced PGE2 production by monocytes in AD is not accompanied by a general rise in cytokine production. We conclude that AD is indeed associated with an increased PGE2/IL-12 production ratio by monocytes
    corecore