2,188 research outputs found
A comparative analysis of projected impacts of climate change on river runoff from global and catchment-scale hydrological models
We present a comparative analysis of projected impacts of climate change on river runoff from two types of distributed hydrological model, a global hydrological model (GHM) and catchment-scale hydrological models (CHM). Analyses are conducted for six catchments that are global in coverage and feature strong contrasts in spatial scale as well as climatic and development conditions. These include the Liard (Canada), Mekong (SE Asia), Okavango (SW Africa), Rio Grande (Brazil), Xiangu (China) and Harper's Brook (UK). A single GHM (Mac-PDM.09) is applied to all catchments whilst different CHMs are applied for each catchment. The CHMs typically simulate water resources impacts based on a more explicit representation of catchment water resources than that available from the GHM, and the CHMs include river routing. Simulations of average annual runoff, mean monthly runoff and high (Q5) and low (Q95) monthly runoff under baseline (1961-1990) and climate change scenarios are presented. We compare the simulated runoff response of each hydrological model to (1) prescribed increases in global mean temperature from the HadCM3 climate model and (2)a prescribed increase in global-mean temperature of 2oC for seven GCMs to explore response to climate model and structural uncertainty.
We find that differences in projected changes of mean annual runoff between the two types of hydrological model can be substantial for a given GCM, and they are generally larger for indicators of high and low flow. However, they are relatively small in comparison to the range of projections across the seven GCMs. Hence, for the six catchments and seven GCMs we considered, climate model structural uncertainty is greater than the uncertainty associated with the type of hydrological model applied. Moreover, shifts in the seasonal cycle of runoff with climate change are presented similarly by both hydrological models, although for some catchments the monthly timing of high and low flows differs.This implies that for studies that seek to quantify and assess the role of climate model uncertainty on catchment-scale runoff, it may be equally as feasible to apply a GHM as it is to apply a CHM, especially when climate modelling uncertainty across the range of available GCMs is as large as it currently is. Whilst the GHM is able to represent the broad climate change signal that is represented by the CHMs, we find, however, that for some catchments there are differences between GHMs and CHMs in mean annual runoff due to differences in potential evaporation estimation methods, in the representation of the seasonality of runoff, and in the magnitude of changes in extreme monthly runoff, all of which have implications for future water management issues
The determination of shock ramp width using the noncoplanar magnetic field component
We determine a simple expression for the ramp width of a collisionless fast
shock, based upon the relationship between the noncoplanar and main magnetic
field components. By comparing this predicted width with that measured during
an observation of a shock, the shock velocity can be determined from a single
spacecraft. For a range of low-Mach, low-beta bow shock observations made by
the ISEE-1 and -2 spacecraft, ramp widths determined from two-spacecraft
comparison and from this noncoplanar component relationship agree within 30%.
When two-spacecraft measurements are not available or are inefficient, this
technique provides a reasonable estimation of scale size for low-Mach shocks.Comment: 6 pages, LaTeX (aguplus + agutex);
packages:amsmath,times,graphicx,float, psfrag,verbatim; 3 postscript figures
called by the file; submitted to Geophys. Res. Let
GRO J1744-28, search for the counterpart: infrared photometry and spectroscopy
Using VLT/ISAAC, we detected 2 candidate counterparts to the bursting pulsar
GRO J1744-28, one bright and one faint, within the X-ray error circles of
XMM-Newton and Chandra. In determining the spectral types of the counterparts
we applied 3 different extinction corrections; one for an all-sky value, one
for a Galactic Bulge value and one for a local value. We find the local value,
with an extinction law of alpha = 3.23 +- 0.01 is the only correction that
results in colours and magnitudes for both bright and faint counterparts
consistent with a small range of spectral types, and for the bright
counterpart, consistent with the spectroscopic identification. Photometry of
the faint candidate indicates it is a K7/M0 V star at a distance of 3.75 +- 1
kpc. This star would require a very low inclination angle (i < 9deg) to satisfy
the mass function constraints; however it cannot be excluded as the counterpart
without follow-up spectroscopy to detect emission signatures of accretion.
Photometry and spectroscopy of the bright candidate indicate it is most likely
a G/K III star. The spectrum does not show Br-gamma emission, a known indicator
of accretion. The bright star's magnitudes are in agreement with the
constraints placed on a probable counterpart by the calculations of Rappaport &
Joss (1997) for an evolved star that has had its envelope stripped. The mass
function indicates the counterpart should have M < 0.3 Msol for an inclination
of i >= 15deg; a stripped giant, or a main sequence M3+ V star are consistent
with this mass-function constraint. In both cases mass-transfer, if present,
will be by wind-accretion as the counterpart will not fill its Roche lobe given
the observed orbital period. The derived magnetic field of 2.4 x 10^{11} G will
inhibit accretion by the propeller effect, hence its quiescent state.Comment: 12 pages, 6 figures, 4 table, MNRAS accepted Changes to the content
and an increased analysis of the Galactic centre extinctio
Can Streamer Blobs prevent the Buildup of the Interplanetetary Magnetic Field?
Coronal Mass Ejections continuously drag closed magnetic field lines away
from the Sun, adding new flux to the interplanetary magnetic field (IMF). We
propose that the outward-moving blobs that have been observed in helmet
streamers are evidence of ongoing, small-scale reconnection in streamer current
sheets, which may play an important role in the prevention of an indefinite
buildup of the IMF. Reconnection between two open field lines from both sides
of a streamer current sheet creates a new closed field line, which becomes part
of the helmet, and a disconnected field line, which moves outward. The blobs
are formed by plasma from the streamer that is swept up in the trough of the
outward moving field line. We show that this mechanism is supported by
observations from SOHO/LASCO. Additionally, we propose a thorough statistical
study to quantify the contribution of blob formation to the reduction of the
IMF, and indicate how this mechanism may be verified by observations with
SOHO/UVCS and the proposed NASA STEREO and ESA Polar Orbiter missions.Comment: 7 pages, 2 figures; accepted by The Astrophysical Journal Letters;
uses AASTe
Improved Turbine Cylinder Bolting System
This paper describes the design and development of a new cylinder bolting syste
Acceleration of Solar Wind Ions by Nearby Interplanetary Shocks: Comparison of Monte Carlo Simulations with Ulysses Observations
The most stringent test of theoretical models of the first-order Fermi
mechanism at collisionless astrophysical shocks is a comparison of the
theoretical predictions with observational data on particle populations. Such
comparisons have yielded good agreement between observations at the
quasi-parallel portion of the Earth's bow shock and three theoretical
approaches, including Monte Carlo kinetic simulations. This paper extends such
model testing to the realm of oblique interplanetary shocks: here observations
of proton and alpha particle distributions made by the SWICS ion mass
spectrometer on Ulysses at nearby interplanetary shocks are compared with test
particle Monte Carlo simulation predictions of accelerated populations. The
plasma parameters used in the simulation are obtained from measurements of
solar wind particles and the magnetic field upstream of individual shocks. Good
agreement between downstream spectral measurements and the simulation
predictions are obtained for two shocks by allowing the the ratio of the
mean-free scattering length to the ionic gyroradius, to vary in an optimization
of the fit to the data. Generally small values of this ratio are obtained,
corresponding to the case of strong scattering. The acceleration process
appears to be roughly independent of the mass or charge of the species.Comment: 26 pages, 6 figures, AASTeX format, to appear in the Astrophysical
Journal, February 20, 199
A global assessment of the impact of climate change on water scarcity
This paper presents a global scale assessment of the impact of climate change on water scarcity. Patterns of climate change from 21 Global Climate Models (GCMs) under four SRES scenarios are applied to a global hydrological model to estimate water resources across 1339 watersheds. The Water Crowding Index (WCI) and the Water Stress Index (WSI) are used to calculate exposure to increases and decreases in global water scarcity due to climate change. 1.6 (WCI) and 2.4 (WSI) billion people are estimated to be currently living within watersheds exposed to water scarcity. Using the WCI, by 2050 under the A1B scenario, 0.5 to 3.1 billion people are exposed to an increase in water scarcity due to climate change (range across 21 GCMs). This represents a higher upper-estimate than previous assessments because scenarios are constructed from a wider range of GCMs. A substantial proportion of the uncertainty in the global-scale effect of climate change on water scarcity is due to uncertainty in the estimates for South Asia and East Asia. Sensitivity to the WCI and WSI thresholds that define water scarcity can be comparable to the sensitivity to climate change pattern. More of the world will see an increase in exposure to water scarcity than a decrease due to climate change but this is not consistent across all climate change patterns. Additionally, investigation of the effects of a set of prescribed global mean temperature change scenarios show rapid increases in water scarcity due to climate change across many regions of the globe, up to 2°C, followed by stabilisation to 4°C
Recommended from our members
Intermittent release of transients in the slow solar wind: 2. In situ evidence
In paper 1, we showed that the Heliospheric Imager (HI) instruments on the pair of NASA STEREO spacecraft can be used to image the streamer belt and, in particular, the variability of the slow solar wind which originates near helmet streamers. The observation of intense intermittent transient outflow by HI implies that the corresponding in situ observations of the slow solar wind and corotating interaction regions (CIRs) should contain many signatures of transients. In the present paper, we compare the HI observations with in situ measurements from the STEREO and ACE spacecraft. Analysis of the solar wind ion, magnetic field, and suprathermal electron flux measurements from
the STEREO spacecraft reveals the presence of both closed and partially disconnected interplanetary magnetic field lines permeating the slow solar wind. We predict that one of the transients embedded within the second CIR (CIRâD in paper 1) should impact the nearâEarth ACE spacecraft. ACE measurements confirm the presence of a transient at the time of CIR passage; the transient signature includes helical magnetic fields and bidirectional suprathermal electrons. On the same day, a strahl electron dropout is observed at STEREOâB, correlated with the passage of a high plasma beta structure. Unlike ACE, STEREOâB observes the transient a few hours ahead of the CIR. STEREOâA, STEREOâB, and ACE spacecraft observe very different slow solar wind properties ahead of and during the CIR analyzed in this paper, which we associate with the intermittent release of transients
Recommended from our members
First imaging of corotating interaction regions using the STEREO spacecraft
Plasma parcels are observed propagating from the Sun out to the large coronal heights monitored by the Heliospheric Imagers (HI) instruments onboard the NASA STEREO spacecraft during September 2007. The source region of these out-flowing parcels is found to corotate with the Sun and to be rooted near the western boundary of an equatorial coronal hole. These plasma enhancements evolve during their propagation through the HI camerasâ fields of view and only becoming fully developed in the outer camera field of view. We provide evidence that HI is observing the formation of a Corotating Interaction Region(CIR) where fast solar wind from the equatorial coronal hole is interacting with the slow solar wind of the streamer belt located on the western edge of that coronal hole. A dense plasma parcel is also observed near the footpoint of the observed CIR at a distance less than 0.1AU from the Sun where fast wind would have not had time to catch up slow wind. We suggest that this low-lying plasma enhancement is a plasma parcel which has been disconnected from a helmet streamer and subsequently becomes embedded inside the corotating interaction region
Methods of assessment used by osteopathic educational institutions
Background: The methods used for assessment of students in osteopathic teaching institutions are not widely documented in the literature. A number of commentaries around clinical competency assessment have drawn on the health professional assessment literature, particularly in medicine. Objective: To ascertain how osteopathic teaching institutions assess their students and to identify issues associated with the assessment process. Design: A series of focus groups and interviews was undertaken with osteopathic teaching institutions. Participants: Twenty-five participants across eleven osteopathic teaching institutions from the United Kingdom, Canada, Italy and Australia. Results: Four themes were identified from the focus groups: Assessing; Processes; Examining; Cost Efficiency. Institutions utilised assessment types such as multiple choice questions and written papers in the early years of a program and progressed towards the long case assessment and Objective Structured Clinical Examination in the later stages of a program. Although examiner cost and training were common themes across all of the institutions, they were perceived to be necessary for developing and conducting assessments. Conclusion: Most institutions relied on traditional assessment methods such as the long case assessment, however, there is increasing recognition of newer forms of assessment, such as the portfolio. The assessment methods employed were typically written assessments in the early years of a program, progressing to long case and Objective Structured Clinical Examination format assessments. © 2012
- âŠ