68 research outputs found

    System architecture for road lighting

    Get PDF
    Traditional road lighting systems consume a large amount of energy. When the ambient light falls under a certain threshold, all the luminaries are turned at full-power without considering user perception and interaction. The feeling of safety experienced by users and user-lighting system interaction via consumer electronics (CE) devices should be investigated. For this study, we establish a software-controlled testbed that allows changing the brightness level of each street luminary remotely. In this paper, we describe the system architecture of this testbed deployed on a street along with the future work directions

    Steady-State Properties of Single-File Systems with Conversion

    Get PDF
    We have used Monte-Carlo methods and analytical techniques to investigate the influence of the characteristic parameters, such as pipe length, diffusion, adsorption, desorption and reaction rate constants on the steady-state properties of Single-File Systems with a reaction. We looked at cases when all the sites are reactive and when only some of them are reactive. Comparisons between Mean-Field predictions and Monte-Carlo simulations for the occupancy profiles and reactivity are made. Substantial differences between Mean-Field and the simulations are found when rates of diffusion are high. Mean-Field results only include Single-File behavior by changing the diffusion rate constant, but it effectively allows passing of particles. Reactivity converges to a limit value if more reactive sites are added: sites in the middle of the system have little or no effect on the kinetics. Occupancy profiles show approximately exponential behavior from the ends to the middle of the system.Comment: 15 pages, 20 figure

    Systematic reduction of Hyperspectral Images for high-throughput Plastic Characterization

    Full text link
    Hyperspectral Imaging (HSI) combines microscopy and spectroscopy to assess the spatial distribution of spectroscopically active compounds in objects, and has diverse applications in food quality control, pharmaceutical processes, and waste sorting. However, due to the large size of HSI datasets, it can be challenging to analyze and store them within a reasonable digital infrastructure, especially in waste sorting where speed and data storage resources are limited. Additionally, as with most spectroscopic data, there is significant redundancy, making pixel and variable selection crucial for retaining chemical information. Recent high-tech developments in chemometrics enable automated and evidence-based data reduction, which can substantially enhance the speed and performance of Non-Negative Matrix Factorization (NMF), a widely used algorithm for chemical resolution of HSI data. By recovering the pure contribution maps and spectral profiles of distributed compounds, NMF can provide evidence-based sorting decisions for efficient waste management. To improve the quality and efficiency of data analysis on hyperspectral imaging (HSI) data, we apply a convex-hull method to select essential pixels and wavelengths and remove uninformative and redundant information. This process minimizes computational strain and effectively eliminates highly mixed pixels. By reducing data redundancy, data investigation and analysis become more straightforward, as demonstrated in both simulated and real HSI data for plastic sorting

    Exact results for the reactivity of a single-file system

    Get PDF
    We derive analytical expressions for the reactivity of a Single-File System with fast diffusion and adsorption and desorption at one end. If the conversion reaction is fast, then the reactivity depends only very weakly on the system size, and the conversion is about 100%. If the reaction is slow, then the reactivity becomes proportional to the system size, the loading, and the reaction rate constant. If the system size increases the reactivity goes to the geometric mean of the reaction rate constant and the rate of adsorption and desorption. For large systems the number of nonconverted particles decreases exponentially with distance from the adsorption/desorption end.Comment: 4 pages, 2 figure

    Transient behavior in Single-File Systems

    Get PDF
    We have used Monte-Carlo methods and analytical techniques to investigate the influence of the characteristics, such as pipe length, diffusion, adsorption, desorption and reaction rates on the transient properties of Single-File Systems. The transient or the relaxation regime is the period in which the system is evolving to equilibrium. We have studied the system when all the sites are reactive and when only some of them are reactive. Comparisons between Mean-Field predictions, Cluster Approximation predictions, and Monte Carlo simulations for the relaxation time of the system are shown. We outline the cases where Mean-Field analysis gives good results compared to Dynamic Monte-Carlo results. For some specific cases we can analytically derive the relaxation time. Occupancy profiles for different distribution of the sites both for Mean-Field and simulations are compared. Different results for slow and fast reaction systems and different distribution of reactive sites are discussed.Comment: 18 pages, 19 figure

    Alcoholic beverages and risk of renal cell cancer

    Get PDF
    Using a mailed questionnaire, we investigated the risk of renal cell cancer in relation to different types of alcoholic beverages, and to total ethanol in a large population-based case–control study among Swedish adults, including 855 cases and 1204 controls. Compared to non-drinkers, a total ethanol intake of >620 g month−1 was significantly related to a decreased risk of renal cell cancer (odds ratio (OR) 0.6, 95% confidence interval (CI) 0.4–0.9; P-value for trend=0.03). The risk decreased 30–40% with drinking more than two glasses per week of red wine (OR 0.6, 95% CI 0.4–0.9), white wine (OR 0.7, 95% CI 0.4–1.0), or strong beer (OR 0.6, 95% CI 0.4–1.0); there was a clear linear trend of decreasing risk with increasing consumption of these beverages (P-values for trends <0.05)

    Morphology formation in binary mixtures upon gradual destabilisation

    Get PDF
    Spontaneous liquid-liquid phase separation is commonly understood in terms of phenomenological mean-field theories. These theories correctly predict the structural features of the fluid at sufficiently long time scales and wavelengths. However, these conditions are not met in various examples in biology and materials science where the mixture is slowly destabilised, and phase separation is strongly affected by critical thermal fluctuations. We propose a mechanism of pretransitional structuring of a mixture that approaches the miscibility gap and predict scaling relations that describe how the characteristic feature size of the emerging morphology decreases with an increasing quench rate. These predictions quantitatively agree with our kinetic Monte Carlo and molecular dynamics simulations of a phase-separating binary mixture, as well as with previously reported experimental observations. We discuss how these predictions are affected by non-conserved order parameters (e.g., due to chemical reactions or alignment of liquid-crystalline molecules), hydrodynamics and active transport
    • …
    corecore