341 research outputs found
Improving mouse-DMH screening capability by adding 2000 mouse CpG islands
Abstract only availableDNA methylation alteration, in correlation with gene expression, is involved in development and progression of many cancers. Using a microarray based method, mouse-DMH (Differential Methylation Hybridization), our lab is able to study DNA methylation changes during prostate cancer progression in the TRAMP (Transgenic Adenocarcinoma of Mouse Prostate) mouse model. Currently, there are about 3000 CpG islands on the microarray, which were used as probes to detect DNA methylation changes. In order to improve our ability to screen for a larger number of CpG island methylation changes, we are working on adding about 2000 more mouse CpG islands onto the array. In addition, we have successfully designed primers and PCR amplified CpG islands for tumor suppressor genes and proto-oncogenes which have been previously reported in literature to be differentially methylated during development of human prostate cancer. These genes include AR (Androgen Receptor), ER (Estrogen Receptor alpha), ER(Estrogen Receptor beta) and GSTP1 (Glutathione S-Transferase PI). Primer design and PCR amplification for other known tumor suppressors/oncogenes is still in process. The microarray-based mouse-DMH is a tool of great potential. It can easily be adapted to screen for DNA methylation changes in other mouse cancer models and generate valuable data leading to understanding of the molecular mechanism behind cancer development, which will in turn contribute to treatment of human cancers.NSF-REU Biology & Biochemistr
Estrogen Up-regulates Apolipoprotein E (ApoE) Gene Expression by Increasing ApoE mRNA in the Translating Pool via the Estrogen Receptor α-Mediated Pathway
The antiatherogenic property of estrogens is mediated via at least two mechanisms: first by affecting plasma lipoprotein profiles, and second by affecting the components of the vessel wall. Raising plasma apolipoprotein E (apoE) in mice protects them against diet-induced atherosclerosis (Shimano, H., Yamada, N., Katsuki, M., Gotoda, T., Harada, K., Murase, T., Fukuzawa, C., Takaku, F., and Yazaka, Y. (1992) Proc. Natl. Acad. Sci. U. S. A. 89, 1750-1754). It is possible that estrogen may be antiatherogenic at least in part by increasing plasma apoE levels. Therefore, we studied the regulation of apoE by estrogen. A survey of 15 inbred strains of mice showed that some mouse strains responded to injections or subcutaneously implanted pellets of estradiol by raising their apoB and apoE levels and some did not. We performed detailed studies in two "responder" strains, C57L and C57BL, and two "non-responder" strains, C3H and BALBc. Responders increased their plasma apoE levels 2.5-fold. Non-responders' levels were altered +/-10%. In the responders the distribution of apoE among the plasma lipoproteins shifted from high density lipoprotein toward the apoB-containing lipoprotein fractions. In nonresponders the shift was toward high density lipoprotein. Hepatic apoE mRNA levels and relative rates of apoE mRNA transcription were unchanged in all strains, suggesting that apoE regulation occurred at posttranscriptional loci. Therefore, we measured apoE synthesis in fresh liver slices and on isolated hepatic polysomes. Two-fold increases were noted but only in responders accompanied by selective 1.5-fold increases in polysomal apoE mRNA levels. Similar increases in apoE synthesis were also observed in castrated C57BL mice given either physiological or pharmacological replacement doses of estradiol, but not testosterone, suggesting that the effect of estradiol was specific on the distribution of apoE mRNA in the translationally active polysomal pool. Next, we examined whether the effects of estrogen on apoE translation were mediated by estrogen receptors (ER). ER-alpha knock-out mice and their wild-type littermates were administered estradiol. As expected, apoE levels and hepatic apoE synthesis increased more than 2-fold in the wild-type littermates, but only 20% increases in the plasma apoE and hepatic synthesis were observed in the ER knock-out mice. Hepatic apoE mRNA levels did not change in either the wild-type or the ER knock-out mice. Thus, estradiol up-regulates apoE gene expression by increasing levels of apoE mRNA in the polysomal translating pool. Furthermore, the increased polysomal recruitment of apoE mRNA is largely mediated by estrogen receptors
High order amplitude equation for steps on creep curve
We consider a model proposed by one of the authors for a type of plastic
instability found in creep experiments which reproduces a number of
experimentally observed features. The model consists of three coupled
non-linear differential equations describing the evolution of three types of
dislocations. The transition to the instability has been shown to be via Hopf
bifurcation leading to limit cycle solutions with respect to physically
relevant drive parameters. Here we use reductive perturbative method to extract
an amplitude equation of up to seventh order to obtain an approximate analytic
expression for the order parameter. The analysis also enables us to obtain the
bifurcation (phase) diagram of the instability. We find that while
supercritical bifurcation dominates the major part of the instability region,
subcritical bifurcation gradually takes over at one end of the region. These
results are compared with the known experimental results. Approximate analytic
expressions for the limit cycles for different types of bifurcations are shown
to agree with their corresponding numerical solutions of the equations
describing the model. The analysis also shows that high order nonlinearities
are important in the problem. This approach further allows us to map the
theoretical parameters to the experimentally observed macroscopic quantities.Comment: LaTex file and eps figures; Communicated to Phys. Rev.
CAG repeat length in the androgen receptor gene is related to age at diagnosis of prostate cancer and response to endocrine therapy, but not to prostate cancer risk
The length of the polymorphic CAG repeat in the N-terminal of the androgen receptor (AR) gene is inversely correlated with the transactivation function of the AR. Some studies have indicated that short CAG repeats are related to higher risk of prostate cancer. We performed a case–control study to investigate relations between CAG repeat length and prostate cancer risk, tumour grade, tumour stage, age at diagnosis and response to endocrine therapy. The study included 190 AR alleles from prostate cancer patients and 186 AR alleles from female control subjects. All were whites from southern Sweden. The frequency distribution of CAG repeat length was strikingly similar for cases and controls, and no significant correlation between CAG repeat length and prostate cancer risk was detected. However, for men with non-hereditary prostate cancer (n = 160), shorter CAG repeats correlated with younger age at diagnosis (P = 0.03). There were also trends toward associations between short CAG repeats and high grade (P = 0.07) and high stage (P = 0.07) disease. Furthermore, we found that patients with long CAG repeats responded better to endocrine therapy, even after adjusting for pretreatment level of prostate-specific antigen and tumour grade and stage (P = 0.05). We conclude that short CAG repeats in the AR gene correlate with young age at diagnosis of prostate cancer, but not with higher risk of the disease. Selection of patients with early onset prostate cancer in case–control studies could therefore lead to an over-estimation of the risk of prostate cancer for men with short CAG repeats. An association between long CAG repeats and good response to endocrine therapy was also found, but the mechanism and clinical relevance are unclear. © 1999 Cancer Research Campaig
Androgen Receptor Functional Analyses by High Throughput Imaging: Determination of Ligand, Cell Cycle, and Mutation-Specific Effects
Understanding how androgen receptor (AR) function is modulated by exposure to steroids, growth factors or small molecules can have important mechanistic implications for AR-related disease therapies (e.g., prostate cancer, androgen insensitivity syndrome, AIS), and in the analysis of environmental endocrine disruptors.We report the development of a high throughput (HT) image-based assay that quantifies AR subcellular and subnuclear distribution, and transcriptional reporter gene activity on a cell-by-cell basis. Furthermore, simultaneous analysis of DNA content allowed determination of cell cycle position and permitted the analysis of cell cycle dependent changes in AR function in unsynchronized cell populations. Assay quality for EC50 coefficients of variation were 5–24%, with Z' values reaching 0.91. This was achieved by the selective analysis of cells expressing physiological levels of AR, important because minor over-expression resulted in elevated nuclear speckling and decreased transcriptional reporter gene activity. A small screen of AR-binding ligands, including known agonists, antagonists, and endocrine disruptors, demonstrated that nuclear translocation and nuclear “speckling” were linked with transcriptional output, and specific ligands were noted to differentially affect measurements for wild type versus mutant AR, suggesting differing mechanisms of action. HT imaging of patient-derived AIS mutations demonstrated a proof-of-principle personalized medicine approach to rapidly identify ligands capable of restoring multiple AR functions.HT imaging-based multiplex screening will provide a rapid, systems-level analysis of compounds/RNAi that may differentially affect wild type AR or clinically relevant AR mutations
Severe forms of partial androgen insensitivity syndrome due to p.L830F novel mutation in androgen receptor gene in a Brazilian family
<p>Abstract</p> <p>Background</p> <p>The androgen insensitivity syndrome may cause developmental failure of normal male external genitalia in individuals with 46,XY karyotype. It results from the diminished or absent biological action of androgens, which is mediated by the androgen receptor in both embryo and secondary sex development. Mutations in the androgen receptor gene, located on the X chromosome, are responsible for the disease. Almost 70% of 46,XY affected individuals inherited mutations from their carrier mothers.</p> <p>Findings</p> <p>Molecular abnormalities in the androgen receptor gene in individuals of a Brazilian family with clinical features of severe forms of partial androgen insensitivity syndrome were evaluated. Seven members (five 46,XY females and two healthy mothers) of the family were included in the investigation. The coding exons and exon-intron junctions of androgen receptor gene were sequenced. Five 46,XY members of the family have been found to be hemizygous for the c.3015C>T nucleotide change in exon 7 of the androgen receptor gene, whereas the two 46,XX mothers were heterozygote carriers. This nucleotide substitution leads to the p.L830F mutation in the androgen receptor.</p> <p>Conclusions</p> <p>The novel p.L830F mutation is responsible for grades 5 and 6 of partial androgen insensitivity syndrome in two generations of a Brazilian family.</p
The perinatal androgen to estrogen ratio and autistic-like traits in the general population: a longitudinal pregnancy cohort study
BACKGROUND: Prenatal androgen exposure has been hypothesized to be linked to autism spectrum disorder (ASD). While previous studies have found a link between testosterone levels in amniotic fluid and autistic-like traits, a similar relationship has not been found for testosterone in umbilical cord blood. However, it may be the net biological activity of multiple androgens and estrogens that influences postnatal effects of prenatal sex steroids. Accordingly, composite levels of androgens (A) and estrogens (E) were investigated, along with their ratio, in relation to autistic-like traits in young adulthood. METHODS: Sex steroid data in umbilical cord blood were available from 860 individuals at delivery. Samples were analyzed for androgens (testosterone, androstenedione, and dehydroepiandrosterone) and estrogens (estrone, estradiol, estriol, and estetrol). Levels of bioavailable testosterone, estradiol, and estrone were measured and used to calculate A and E composites and the A to E ratio. Participants were approached in early adulthood to complete the autism-spectrum quotient (AQ) as a self-report measure of autistic-like traits, with 183 males (M = 20.10 years, SD = 0.65 years) and 189 females (M =19.92 years, SD = 0.68 years) providing data. RESULTS: Males exhibited significantly higher androgen composites and A to E composite ratios than females. Males also scored significantly higher on the details/patterns subscale of the AQ. Subsequent categorical and continuous analyses, which accounted for covariates, revealed no substantial relationships between the A/E composites or the A to E ratio and the AQ total or subscale scores. CONCLUSIONS: The current study found no link between the A/E composites or the A to E ratio in cord blood and autistic-like traits in the population as measured by the AQ. These outcomes do not exclude the possibility that these sex steroid variables may predict other neurodevelopmental traits in early development. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s11689-015-9114-9) contains supplementary material, which is available to authorized users
17β-Estradiol Prevents Early-Stage Atherosclerosis in Estrogen Receptor-Alpha Deficient Female Mice
Estrogen is atheroprotective and a high-affinity ligand for both known estrogen receptors, ERα and ERβ. However, the role of the ERα in early-stage atherosclerosis has not been directly investigated and is incompletely understood. ERα-deficient (ERα−/−) and wild-type (ERα+/+) female mice consuming an atherogenic diet were studied concurrent with estrogen replacement to distinguish the actions of 17β-estradiol (E2) from those of ERα on the development of early atherosclerotic lesions. Mice were ovariectomized and implanted with subcutaneous slow-release pellets designed to deliver 6 or 8 μg/day of exogenous 17β-estradiol (E2) for a period of up to 4 months. Ovariectomized mice (OVX) with placebo pellets (E2-deficient controls) were compared to mice with endogenous E2 (intact ovaries) and exogenous E2. Aortas were analyzed for lesion area, number, and distribution. Lipid and hormone levels were also determined. Compared to OVX, early lesion development was significantly (p < 0.001) attenuated by E2 with 55–64% reduction in lesion area by endogenous E2 and >90% reduction by exogenous E2. Compared to OVX, a decline in lesion number (2- to 4-fold) and lesser predilection (~4-fold) of lesion formation in the proximal aorta also occurred with E2. Lesion size, development, number, and distribution inversely correlated with circulating plasma E2 levels. However, atheroprotection was independent of ERα status, and E2 athero-protection in both genotypes was not explained by changes in plasma lipid levels (total cholesterol, triglyceride, and high-density lipoprotein cholesterol). The ERα is not essential for endogenous/exogenous E2-mediated protection against early-stage atherosclerosis. These observations have potentially significant implications for understanding the molecular and cellular mechanisms and timing of estrogen action in different estrogen receptor (ER) deletion murine models of atherosclerosis, as well as implications to human studies of ER polymorphisms and lipid metabolism. Our findings may contribute to future improved clinical decision-making concerning the use of hormone therapy
Detailed analysis of X chromosome inactivation in a 49,XXXXX pentasomy
<p>Abstract</p> <p>Background</p> <p>Pentasomy X (49,XXXXX) has been associated with a severe clinical condition, presumably resulting from failure or disruption of X chromosome inactivation. Here we report that some human X chromosomes from a patient with 49,XXXXX pentasomy were functionally active following isolation in inter-specific (human-rodent) cell hybrids. A comparison with cytogenetic and molecular findings provided evidence that more than one active X chromosome was likely to be present in the cells of this patient, accounting for her abnormal phenotype.</p> <p>Results</p> <p>5-bromodeoxyuridine (BrdU)-pulsed cultures showed different patterns among late replicating X chromosomes suggesting that their replication was asynchronic and likely to result in irregular inactivation. Genotyping of the proband and her mother identified four maternal and one paternal X chromosomes in the proband. It also identified the paternal X chromosome haplotype (P), indicating that origin of this X pentasomy resulted from two maternal, meiotic non-disjunctions. Analysis of the <it>HUMANDREC </it>region of the androgen receptor (<it>AR</it>) gene in the patient's mother showed a skewed inactivation pattern, while a similar analysis in the proband showed an active paternal X chromosome and preferentially inactivated X chromosomes carrying the 173 <it>AR </it>allele. Analyses of 33 cell hybrid cell lines selected in medium containing hypoxanthine, aminopterin and thymidine (HAT) allowed for the identification of three maternal X haplotypes (M1, M2 and MR) and showed that X chromosomes with the M1, M2 and P haplotypes were functionally active. In 27 cell hybrids in which more than one X haplotype were detected, analysis of X inactivation patterns provided evidence of preferential inactivation.</p> <p>Conclusion</p> <p>Our findings indicated that 12% of X chromosomes with the M1 haplotype, 43.5% of X chromosomes with the M2 haplotype, and 100% of the paternal X chromosome (with the P haplotype) were likely to be functionally active in the proband's cells, a finding indicating that disruption of X inactivation was associated to her severe phenotype.</p
- …