38 research outputs found

    Decision making under uncertainty in environmental projects using mathematical simulation modeling

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s12665-016-6135-yIn decision-making processes, reliability and risk aversion play a decisive role. The aim of this study is to perform an uncertainty assessment of the effects of future scenarios of sustainable groundwater pumping strategies on the quantitative and chemical status of an aquifer. The good status of the aquifer is defined according to the terms established by the EU Water Framework Directive (WFD). A decision support systems (DSS) is presented, which makes use of a stochastic inverse model (GC method) and geostatistical approaches to calibrate equally likely realizations of hydraulic conductivity (K) fields for a particular case study. These K fields are conditional to available field data, including hard and soft information. Then, different future scenarios of groundwater pumping strategies are generated, based on historical information and WFD standards, and simulated for each one of the equally likely K fields. The future scenarios lead to different environmental impacts and levels of socioeconomic development of the region and, hence, to a different degree of acceptance among stakeholders. We have identified the different stakeholders implied in the decision-making process, the objectives pursued and the alternative actions that should be considered by stakeholders in a public participation project (PPP). The MonteCarlo simulation provides a highly effective way for uncertainty assessment and allows presenting the results in a simple and understandable way even for non-experts stakeholders. The methodology has been successfully applied to a real case study and lays the foundations to performa PPP and stakeholders' involvement in a decisionmaking process as required by the WFD. The results of the methodology can help the decision-making process to come up with the best policies and regulations for a groundwater system under uncertainty in groundwater parameters and management strategies and involving stakeholders with conflicting interests.Llopis Albert, C.; Palacios Marqués, D.; Merigó -Lindahl, JM. (2016). Decision making under uncertainty in environmental projects using mathematical simulation modeling. Environmental Earth Sciences. 75(19):1-11. doi:10.1007/s12665-016-6135-yS1117519Arhonditsis GB, Perhar G, Zhang W, Massos E, Shi M, Das A (2008) Addressing equifinality and uncertainty in eutrophication models. Water Resour Res 44:W01420. doi: 10.1029/2007WR005862Capilla JE, Llopis-Albert C (2009) Gradual conditioning of non-gaussian transmissivity fields to flow and mass transport data. J Hydrol 371:66–74. doi: 10.1016/j.jhydrol.2009.03.015CHJ (Júcar Water Agency) (2016) Júcar river basin authority. http://www.chj.es/CHS (Segura Water Agency) (2016) Segura river basin authority. http://www.chsegura.es/Custodio E (2002) Aquifer overexploitation: what does it mean? Hydrogeol J 10:254–277EC (2000). Directive 2000/60/EC of the European Parliament and of the Council of October 23 2000, establishing a framework for community action in the field of water policy. Official Journal of the European Communities L327/1eL327/72. 22.12.2000EC (2006) Directive 2006/118/EC of the European Parliament and of the Council of 12 December 2006 on the protection of groundwater against pollution and deteriorationGómez-Hernández JJ, Srivastava RM (1990) ISIM3D: an ANSI-C three dimensional multiple indicator conditional simulation program. Comput Geosci 16(4):395–440Harbaugh AW, Banta ER, Hill MC and McDonald MG (2000) MODFLOW- 2000, The US geological survey modular groundwater model-user guide to modularization concepts and the groundwater flow process. US Geol. Surv. Open-File Rep 00–92, 12Hu LY (2000) Gradual deformation and iterative calibration of Gaussian related stochastic models. Math Geol 32(1):87–108Jagelke J, Barthel R (2005) Conceptualization and implementation of a regional groundwater model for the Neckar catchment in the framework of an integrated regional model. Adv Geosci 5:105–111Llopis-Albert C (2008) Stochastic inverse modeling conditional to flow, mass transport and secondary information. Universitat Politècnica de València, València. ISBN 978-84-691-9796-7Llopis-Albert C, Capilla JE (2009a) Gradual conditioning of non-gaussian transmissivity fields to flow and mass transport data. Demonstration on a synthetic aquifer. J Hydrol 371:53–55. doi: 10.1016/j.jhydrol.2009.03.014Llopis-Albert C, Capilla JE (2009b) Gradual conditioning of non-gaussian transmissivity fields to flow and mass transport data. Application to the macrodispersion experiment (MADE-2) site, on Columbus air force base in Mississippi (USA). J Hydrol 371:75–84. doi: 10.1016/j.jhydrol.2009.03.016Llopis-Albert C, Capilla JE (2010a) Stochastic simulation of non-gaussian 3D conductivity fields in a fractured medium with multiple statistical populations: a case study. J Hydrol Eng 15(7):554–566. doi: 10.1061/(ASCE)HE.1943-5584.0000214Llopis-Albert C, Capilla JE (2010b) Stochastic inverse modeling of hydraulic conductivity fields taking into account independent stochastic structures: a 3D case study. J Hydrol 391:277–288. doi: 10.1016/j.jhydrol.2010.07.028Llopis-Albert C, Pulido-Velazquez D (2014) Discussion about the validity of sharp-interface models to deal with seawater intrusion in coastal aquifers. Hydrol Process 28(10):3642–3654Llopis-Albert C, Pulido-Velazquez D (2015) Using MODFLOW code to approach transient hydraulic head with a sharp-interface solution. Hydrol Process 29(8):2052–2064. doi: 10.1002/hyp.10354Llopis-Albert C, Palacios-Marqués D, Merigó JM (2014) A coupled stochastic inverse-management framework for dealing with nonpoint agriculture pollution under groundwater parameter uncertainty. J Hydrol 511:10–16. doi: 10.1016/j.jhydrol.2014.01.021Llopis-Albert C, Merigó JM, Palacios-Marqués D (2015) Structure adaptation in stochastic inverse methods for integrating information. Water Resour Manage 29(1):95–107. doi: 10.1007/s11269-014-0829-2Llopis-Albert C, Merigó JM, Xu Y (2016) A coupled stochastic inverse/sharp interface seawater intrusion approach for coastal aquifers under groundwater parameter uncertainty. J Hydrol 540:774–783. doi: 10.1016/j.jhydrol.2016.06.065McDonald MG and Harbaugh AW (1988) A modular three-dimensional finite-difference groundwater flow model. US geological survey technical manual of water resources investigation, Book 6, US geological survey, Reston, Virginia, 586Molina JL, Pulido-Velazquez M, Llopis-Albert C, Peña-Haro S (2013) Stochastic hydro-economic model for groundwater quality management using Bayesian networks. Water Sci Technol 67(3):579–586. doi: 10.2166/wst.2012.598Peña-Haro S, Llopis-Albert C, Pulido-Velazquez M (2010) Fertilizer standards for controlling groundwater nitrate pollution from agriculture: El Salobral-Los Llanos case study, Spain. J Hydrol 392:174–187. doi: 10.1016/j.jhydrol.2010.08.006Peña-Haro S, Pulido-Velazquez M, Llopis-Albert C (2011) Stochastic hydro-economic modeling for optimal management of agricultural groundwater nitrate pollution under hydraulic conductivity uncertainty. Environ Model Softw 26(8):999–1008. doi: 10.1016/j.envsoft.2011.02.010Pulido-Velazquez D, Llopis-Albert C, Peña-Haro S, Pulido-Velazquez M (2011) Efficient conceptual model for simulating the effect of aquifer heterogeneity on natural groundwater discharge to rivers. Adv Water Resour 34(11):1377–1389. doi: 10.1016/j.advwatres.2011.07.010Reichert P, Borsuk M, Hostmann M, Schweizer S, Spörri C, Tockner K, Truffer B (2005) Concepts of decision support for river rehabilitation. Environ Model Softw 22:188–201Wright SAL, Fritsch O (2011) Operationalising active involvement in the EU water framework directive: why, when and how? Ecol Econ 70(12):2268–2274Zhou H, Gómez-Hernández JJ, Li L (2014) Inverse methods in hydrogeology: evolution and recent trends. Adv Water Resour 63:22–37. doi: 10.1016/j.advwatres.2013.10.01

    Use of technical computing systems in the context of engineering problems

    Full text link
    [EN] This paper presents a teaching innovation project based on applying technical computing systems as a resource to improve learning in the classroom and as a way of evaluating transversal competences (TC). By these means, students analyze complex kinematic and dynamic mechanical systems in the context of the subject Dynamics of Mechanical Systems of the Master’s Degree in Mechatronics Engineering at Universitat Politècnica de València (Spain). We have observed that the use of such tools improves the students learning on the contents of the subject, allows to acquire the transversal competence related to the analysis and problem solving, and enhances the ability to understand concepts intuitively. Furthermore, results clearly show a positive influence on the use of such tools for improving the professional and ethical commitment to the issues raised.Llopis Albert, C.; Rubio Montoya, FJ.; Valle-Falcones, L.; Grima-Olmedo, C. (2020). Use of technical computing systems in the context of engineering problems. Multidisciplinary Journal for Education, Social and Technological Sciences. 7(2):84-99. https://doi.org/10.4995/muse.2020.14283OJS849972Artobolevsky, I.I. 1975. Mechanisms in Modern Engineering Design: A Handbook for Engineers, Designers and Inventors. Seven books. Mir Pubblishers, Moscow.Bloom, B.S. 1956. Taxonomy of Educational Objectives: The Classification of Educational Goals. David McKay Company, p. 201-7.Llopis-Albert, C., Rubio, F., Valero, F. 2015. Improving productivity using a multi-objective optimization of robotic trajectory planning. Journal of Business Research, 68 (7), 1429-1431. https://doi.org/10.1016/j.jbusres.2015.01.027Llopis-Albert, C., Rubio, F., Valero, F. (2018). Optimization approaches for robot trajectory planning. Multidisciplinary Journal for Education, Social and Technological Sciences, 5(1), 1-16. https://doi.org/10.4995/muse.2018.9867Llopis-Albert, C., Rubio, F., Valero, F. (2019). Fuzzy-set qualitative comparative analysis applied to the design of a network flow of automated guided vehicles for improving business productivity. Journal of Business Research, 101, 737-742. https://doi.org/10.1016/j.jbusres.2018.12.076Llopis-Albert, C., Rubio, F., Valero, F., Liao, H., Zeng, S. 2019a. Stochastic inverse finite element modeling for characterization of heterogeneous material properties. Materials Research Express, 6(11), 115806. https://doi.org/10.1088/2053-1591/ab4c72Llopis-Albert, C., Valero, F., Mata, V., Pulloquinga, J.L., Zamora-Ortiz, P., Escarabajal, R.J. 2020. Optimal Reconfiguration of a Parallel Robot for Forward Singularities Avoidance in Rehabilitation Therapies. A Comparison via Different Optimization Methods. Sustainability, 12(14), 5803. https://doi.org/10.3390/su12145803Llopis-Albert, C., Valero, F., Mata, V., Zamora-Ortiz, P., Escarabajal, R.J., Pulloquinga, J.L. 2020a. Optimal Reconfiguration of a Limited Parallel Robot for Forward Singularities Avoidance. Multidisciplinary Journal for Education, Social and Technological Sciences, 7(1), 113-127. https://doi.org/10.4995/muse.2020.13352Rubio, F., Llopis-Albert, C., Valero, F., Suñer, J.L. 2015. Assembly Line Productivity Assessment by Comparing Optimization-Simulation Algorithms of Trajectory Planning for Industrial Robots. Mathematical Problems in Engineering, 10 pages. Article ID 931048. https://doi.org/10.1155/2015/931048Rubio, F., Llopis-Albert, C., Valero, F., & Suñer, J. L. 2016. Industrial robot efficient trajectory generation without collision through the evolution of the optimal trajectory. Robotics and Autonomous Systems, 86, 106-112. https://doi.org/10.1016/j.robot.2016.09.008Rubio, F., Llopis-Albert, C. 2019. Viability of using wind turbines for electricity generation in electric vehicles. Multidisciplinary Journal for Education, Social and Technological Sciences, 6(1), 115-126. https://doi.org/10.4995/muse.2019.11743Rubio, F., Valero, F., & Llopis-Albert, C. 2019a. A review of mobile robots: Concepts, methods, theoretical framework, and applications. International Journal of Advanced Robotic Systems, 16(2), 172988141983959. https://doi.org/10.1177/1729881419839596SolidWorks software. 2020. Dassault Systèmes SolidWorks Corporation. 175 Wyman Street Waltham, MA 02451, USA. https://www.solidworks.com/UPV, 2020. Proyecto institucional competencias transversales. Universitat Politècnica de València (UPV). Valencia. Spain. https://www.upv.es/entidades/ICE/info/Proyecto_Institucional_CT.pdfWolfram Mathematica software. 2020. The Wolfram Centre. Lower Road, Long Hanborough. Oxfordshire OX29 8FD, United Kingdom. https://www.wolfram.com/mathematica/Valero, F., Rubio, F., Llopis-Albert, C., Cuadrado, J.I. (2017). Influence of the Friction Coefficient on the Trajectory Performance for a Car-Like Robot. Mathematical Problems in Engineering, 9 pages. Article ID 4562647. https://doi.org/10.1155/2017/4562647Valero, F., Rubio, F., Llopis-Albert, C. 2019. Assessment of the Effect of Energy Consumption on Trajectory Improvement for a Car-like Robot. Robotica, 37(11), 1998-2009. https://doi.org/10.1017/S0263574719000407Valero, F., Rubio, F., Besa, A.J. 2019a. Efficient trajectory of a car-like mobile robot. Industrial Robot: the international journal of robotics research and application, 46(2), 211-222. https://doi.org/10.1108/IR-10-2018-021

    Water Policies and Conflict Resolution of Public Participation Decision-Making Processes Using Prioritized Ordered Weighted Averaging (OWA) Operators

    Full text link
    [EN] There is a growing interest in environmental policies about how to implement public participation engagement in the context of water resources management. This paper presents a robust methodology, based on ordered weighted averaging (OWA) operators, to conflict resolution decision-making problems under uncertain environments due to both information and stakeholders' preferences. The methodology allows integrating heterogeneous interests of the general public and stakeholders on account of their different degree of acceptance or preference and level of influence or power regarding the measures and policies to be adopted, and also of their level of involvement (i.e., information supply, consultation and active involvement). These considerations lead to different environmental and socio-economic outcomes, and levels of stakeholders' satisfaction. The methodology establishes a prioritization relationship over the stakeholders. The individual stakeholders' preferences are aggregated through their associated weights, which depend on the satisfaction of the higher priority decision maker. The methodology ranks the optimal management strategies to maximize the stakeholders' satisfaction. It has been successfully applied to a real case study, providing greater fairness, transparency, social equity and consensus among actors. Furthermore, it provides support to environmental policies, such as the EU Water Framework Directive (WFD), improving integrated water management while covering a wide range of objectives, management alternatives and stakeholders.Llopis Albert, C.; Merigó-Lindahl, JM.; Liao, H.; Xu, Y.; Grima-Olmedo, J.; Grima-Olmedo, C. (2018). Water Policies and Conflict Resolution of Public Participation Decision-Making Processes Using Prioritized Ordered Weighted Averaging (OWA) Operators. Water Resources Management. 32(2):497-510. https://doi.org/10.1007/s11269-017-1823-2S497510322Amin GR, Sadeghi H (2010) Application of prioritized aggregation operators in preference voting. Int J Intell Syst 25(10):1027–1034Chen TY (2014) A prioritized aggregation operator-based approach to multiple criteria decision making using interval-valued intuitionistic fuzzy sets: A comparative perspective. Inf Sci 281:97–112Chen LH, Xu ZS (2014) A prioritized aggregation operator based on the OWA operator and prioritized measures. J Intell Fuzzy Syst 27:1297–1307Chen LH, Xu ZS, Yu XH (2014a) Prioritized measure-guided aggregation operators. IEEE Trans Fuzzy Syst 22:1127–1138Chen LH, Xu ZS, Yu XH (2014b) Weakly prioritized measure aggregation in prioritized multicriteria decision making. Int J Intell Syst 29:439–461CHJ (2016). Júcar river basin authority http://www.chj.es/CHS (2016). Segura river basin authority http://www.chsegura.es/Dong JY, Wan SP (2016) A new method for prioritized multi-criteria group decision making with triangular intuitionistic fuzzy numbers. J Intell Fuzzy Syst 30:1719–1733EC (2000). Directive 2000/60/EC of the European Parliament and of the Council of October 23 2000 Establishing a Framework for Community Action in the Field of Water Policy. Official Journal of the European Communities, L327/1eL327/72 22.12.2000Jackson S, Tan P-L, Nolan S (2012) Tools to enhance public participation and confidence in the development of the Howard East aquifer water plan, Northern Territory. J Hydrol 474:22–28Jin FF, Ni ZW, Chen HY (2016) Note on “Hesitant fuzzy prioritized operators and their application to multiple attribute decision making”. Knowl-Based Syst 96:115–119Kentel E, Aral MM (2007) Fuzzy Multiobjective Decision-Making Approach for Groundwater Resources Management. J Hydrol Eng 12(2):206–217. https://doi.org/10.1061/(ASCE)1084-0699(2007)12:2(206).Kirchherr J, Charles KJ, Walton MJ (2016) Multi-causal pathways of public opposition to dam project in Asia: A fuzzy set qualitative comparative analysis (fsQCA). Glob Environ Chang 41:33–45. https://doi.org/10.1016/j.gloenvcha.2016.08.001Llopis-Albert C, Pulido-Velazquez D (2015) Using MODFLOW code to approach transient hydraulic head with a sharp-interface solution. Hydrol Process 29(8):2052–2064. https://doi.org/10.1002/hyp.10354Llopis-Albert C, Palacios-Marqués D, Soto-Acosta P (2015) Decision-making and stakeholders constructive participation in environmental projects. J Bus Res 68:1641–1644. https://doi.org/10.1016/j.jbusres.2015.02.010Llopis-Albert C, Merigó JM, Xu Y, Huchang L (2017) Improving regional climate projections by prioritized aggregation via ordered weighted averaging operators. Environ Eng Sci. https://doi.org/10.1089/ees.2016.0546Maia R (2017) The WFD Implementation in the European Member States. Water Resour Manag 31(10):3043–3060. https://doi.org/10.1007/s11269-017-1723-5Malczewski J, Chapman T, Flegel C, Walters D, Shrubsole D, Healy MA (2003) GIS - multicriteria evaluation with ordered weighted averaging (OWA): case study of developing watershed management strategies. Environ Plan A 35:1769–1784. https://doi.org/10.1068/a35156Merigó JM, Casanovas M (2011) The uncertain generalized owa operator and its application to financial decision making. Int J Inf Technol Decis Mak 10(2):211–230Merigó JM, Yager RR (2013) Generalized moving averages, distance measures and OWA operators. Int J Uncertain, Fuzziness Knowl-Based Syst 21(4):533–559Merigó JM, Palacios-Marqués D, Ribeiro-Navarrete B (2015) Aggregation systems for sales forecasting. J Bus Res 68:2299–2304Mesiar R, Stupnanová A, Yager RR (2015) Generalizations of OWA Operators. IEEE Trans Fuzzy Syst 23(6):2154–2162O’Hagan M (1988) Aggregating Template Rule Antecedents in Real-time Expert Systems with Fuzzy Set Logic. In: Proceedings of 22nd annual IEEE Asilomar Conference on Signals. IEEE and Maple Press, Pacific Grove, Systems and Computers, pp 681–689Rahmani MA, Zarghami M (2013) A new approach to combine climate change projections by ordered weighting averaging operator; applications to northwestern provinces of Iran. Glob Planet Chang 102:41–50Ran LG, Wei GW (2015) Uncertain prioritized operators and their application to multiple attribute group decision making. Technol Econ Dev Econ 21:118–139Ruiz-Villaverde, A., García-Rubio, M.A. (2017). Public Participation in European Water Management: from Theory to Practice. Water Resour Manag 31(8), 2479–2495. https://doi.org/10.1007/s11269-016-1355-1Sadiq R, Tesfamariam S (2007) Probability density functions based weights for ordered weighted averaging (OWA) operators: An example of water quality indices. Eur J Oper Res 182:1350–1368Sadiq R, Rodríguez MJ, Tesfamariam S (2010) Integrating indicators for performance assessment of small water utilities using ordered weighted averaging (OWA) operators. Expert Syst Appl 37:4881–4891Verma R, Sharma B (2016) Prioritized information fusion method for triangular fuzzy information and its application to multiple attribute decision making. Int J Uncertain, Fuzziness Knowl-Based Syst 24:265–290Wang HM, Xu YJ, Merigó JM (2014) Prioritized aggregation for non-homogeneous group decision making in water resource management. Econ Comput Econ Cybern Stud Res 48(1):247–258Wei GW (2012) Hesitant fuzzy prioritized operators. Knowl-Based Syst 31:176–182Wei CP, Tang XJ (2012) Generalized prioritized aggregation operators. Int J Intell Syst 27:578–589Xu ZS (2005) An Overview of Methods for Determining OWA Weights. Int J Intell Syst 20:843–865Yager RR (1988) On ordered weighted averaging aggregation operators in multi-criteria decision making, IEEE Transactions on Systems. Man Cybern B 18(1988):183–190Yager RR (2008) Prioritized Aggregation Operators. Int J Approx Reason 48:263–274Yan H-B, Huynh V-N, Nakamori Y, Murai T (2011) On prioritized weighted aggregation in multi-criteria decision making. Expert Syst Appl 38(1):812–823Ye J (2014) Prioritized aggregation operators of trapezoidal intuitionistic fuzzy sets and their application to multicriteria decision-making. Neural Comput & Applic 25:1447–1454Yu XH, Xu ZS, Liu SS (2013) Prioritized multi-criteria decision making based on preference relations. Comput Ind Eng 66:104–115Zadeh LA (1983) A Computational Approach to Fuzzy Quantifiers in Natural Languages. Comput Math Appl 9:149–184Zarghami M, Szidarovszky F (2009) Revising the OWA operator for multi criteria decision making problems under uncertainty. Eur J Oper Res 198:259–265Zarghami M, Ardakanian R, Memariani A, Szidarovszky F (2008) Extended OWA Operator for Group Decision Making on Water Resources Projects. J Water Resour Plan Manag 134(3):266–275. https://doi.org/10.1061/(ASCE)0733-9496(2008)134:3(266)Zarghami M, Szidarovszky F, Ardakanian R (2009) Multi-attribute decision making on inter-basin water transfer projects. Transaction E. Ind Eng 16(1):73–80Zhao XF, Li QX, Wei GW (2014) Some prioritized aggregating operators with linguistic information and their application to multiple attribute group decision making. J Intell Fuzzy Syst 26:1619–1630Zhao N, Xu ZS, Ren ZL (2016) On typical hesitant fuzzy prioritized “or” operator in multi-attribute decision making. Int J Intell Syst 31:73–100Zhou LY, Lin R, Zhao XF, Wei GW (2013) Uncertain linguistic prioritized aggregation operators and their application to multiple attribute group decision making. Int J Uncertain, Fuzziness Knowl-Based Syst 21:603–627Zhou LG, Merigó JM, Chen HY, Liu JP (2016) The optimal group continuous logarithm compatibility measure for interval multiplicative preference relations based on the COWGA operator. Inf Sci 328:250–26

    Integrated assessment of future potential global change scenarios and their hydrological impacts in coastal aquifers - a new tool to analyse management alternatives in the Plana Oropesa-Torreblanca aquifer

    Get PDF
    [EN] Any change in the components of the water balance in a coastal aquifer, whether natural or anthropogenic, can alter the freshwater-salt water equilibrium. In this sense climate change (CC) and land use and land cover (LULC) change might significantly influence the availability of groundwater resources in the future. These coastal systems demand an integrated analysis of quantity and quality issues to obtain an appropriate assessment of hydrological impacts using density-dependent flow solutions. The aim of this work is to perform an integrated analysis of future potential global change (GC) scenarios and their hydrological impacts in a coastal aquifer, the Plana Oropesa-Torreblanca aquifer. It is a Mediterranean aquifer that extends over 75 km(2) in which important historical LULC changes have been produced and are planned for the future. Future CC scenarios will be defined by using an equi-feasible and non-feasible ensemble of projections based on the results of a multi-criteria analysis of the series generated from several regional climatic models with different downscaling approaches. The hydrological impacts of these CC scenarios combined with future LULC scenarios will be assessed with a chain of models defined by a sequential coupling of rainfall-recharge models, crop irrigation requirements and irrigation return models (for the aquifer and its neighbours that feed it), and a density-dependent aquifer approach. This chain of models, calibrated using the available historical data, allow testing of the conceptual approximation of the aquifer behaviour. They are also fed with series representatives of potential global change scenarios in order to perform a sensitivity analysis regarding future scenarios of rainfall recharge, lateral flows coming from the hydraulically connected neighbouring aquifer, agricultural recharge (taking into account expected future LULC changes) and sea level rise (SLR). The proposed analysis is valuable for improving our knowledge about the aquifer, and so comprises a tool to design sustainable adaptation management strategies taking into account the uncertainty in future GC conditions and their impacts. The results show that GC scenarios produce significant increases in the variability of flow budget components and in the salinity.This research work has been partially supported by the GESINHIMPADAPT project (CGL2013-48424-C2-2-R) with Spanish MINECO funds, the PMAFI/06/14 project with UCAM funds and the Plan de Garantia Juvenil from MINECO, co-financing by BEI and FSE. We would like to thank the Spain02 (AEMET and UC) and CORDEX projects and the Jucar Water Agency (CHJ) for the data provided for this study. We appreciate the valuable comments and suggestions provided by the editor and two anonymous referees.Pulido Velázquez, D.; Renau-Pruñonosa, A.; Llopis Albert, C.; Morell, I.; Collados-Lara, A.; Senent-Aparicio, J.; Leticia Baena-Ruiz (2018). Integrated assessment of future potential global change scenarios and their hydrological impacts in coastal aquifers - a new tool to analyse management alternatives in the Plana Oropesa-Torreblanca aquifer. HYDROLOGY AND EARTH SYSTEM SCIENCES. 22(5):3053-3074. https://doi.org/10.5194/hess-22-3053-2018S30533074225Alcalá, F. J. and Custodio, E.: Spatial average aquifer recharge through atmospheric ride mass balance and its uncertainty in continental Spain, Hydrol. Process, 28, 218–236, 2014.Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration – Guidelines for computing crop water requirements, FAO Irrigation and drainage paper 56, FAO, Rome, http://www.fao.org/docrep/X0490E/x0490e00.htm (last access: May 2018), 1998.Arora, V. K.: The use of the aridity index to assess climate change effect on annual runoff, J. Hydrol., 265, 164–177, 2002.Arslan, H. and Demir, Y.: Impacts of seawater intrusion on soil salinity and alkalinity in Bafra Plain, Turkey, Environ. Monit. Assess., 185, 1027–1040, 2013.Baena-Ruiz, L., Pulido-Velazquez, D., Collados-Lara, A. J., Renau-Pruñonosa, A., and Morell, I.: Global assessment of seawater intrusion problems (status and vulnerability), Water Resour. Manage., 32, 2681–2700, https://doi.org/10.1007/s11269-018-1952-2, 2018.Benini, L., Antonellini, M., Laghi, M., and Mollema, P. N.: Assessment of Water Resources Availability and Groundwater Salinization in Future Climate and Land use Change Scenarios: A Case Study from a Coastal Drainage Basin in Italy, Water Resour. Manage., 30, 731–745, 2016.Brunet, M., Casado, M. J., de Castro, M., Galán, P., López, J. A., Martín, J. M., Pastor, A., Petisco, E., Ramos, P., Ribalaygua, J., Rodríguez, E., Sanz, I., and Torres, L.: Generación de escenarios regionalizados de cambio climático para España, Ministerio de Medio Ambiente y Medio Rural y Marino; Agencia Estatal de Meteorología, Madrid, 158 pp., 2009.Budyko, M. I.: Climate and Life, Academic Press, New York, 508 pp., 1974.Chang, S., Clement, T. P., Simpson, M., and Lee, K.: Does sea-level rise have an impact on saltwater intrusion?, Adv. Water Resour., 34, 1283–1291, https://doi.org/10.1016/j.advwatres.2011.06.006, 2011.CHJ – Júcar Water Agency: Júcar River Basin Plan, Demarcación hidrográfica del Júcar, Confederación Hidrográfica del Júcar, Ministry of Agriculture, Food and Environment, Madrid, Spain, 2015.Church, J. A., Clark, P. U., Cazenave, A., Gregory, J. M., Jevrejeva, S., Levermann, A., Merrifield, M. A., Milne, G. A., Nerem, R. S., Nunn, P. D., Payne, A. J., Pfeffer, W. T., Stammer, D., and Unnikrishnan, A. S.: Sea Level Change, in: Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press, Cambridge, UK and New York, NY, USA, 2013.Control networks of the Júcar River Basin Authority: https://www.chj.es/es-es/medioambiente/redescontrol/Paginas/RedesdeControl.aspx/, last access: 28 May 2018.CORDEX PROJECT: The Coordinated Regional Climate Downscaling Experiment CORDEX, Program sponsored by World Climate Research Program (WCRP), available at: http://wcrp-cordex.ipsl.jussieu.fr/ (last access: 4 May 2017), 2013.CORDEX Regional Data Portals: http://www.cordex.org/data-access/regional-data-portals/, last access: 28 May 2018.Coutagne, A.: Quelques considérations sur le pouvoir évaporant de l'atmosphere, le déficit d'écoulement effectif et le déficit d'écoulement maximum, La Houille Blanche, 3, 360–374, https://doi.org/10.1051/lhb/1954036, 1954.Custodio, E.: Coastal Aquifers of Europe: an overview, Hydrogeol. J., 18, 269–280, https://doi.org/10.1007/s10040-009-0496-1 2010.Doulgeris, C. and Zissis, T.: 3D variable density flow simulation to evaluate dumping schemes in coastal aquifers, Water Resour. Manage., 28, 4943–4956, 2014.Dragoni, W. and Sukhija, B.S.: Climate change and groundwater: a short review, Geol. Soc. Lond. Spec. Publ., 288, 1–12, 2008.EEA – European Environment Agency: Global and European sea-level rise, http://www.eea.europa.eu/data-and-maps/indicators/sea-level-rise-2/assessment (last access: 4 May 2017), 2014.Escriva-Bou, A., Pulido-Velazquez, M., and Pulido-Velazquez, D.: The Economic Value of Adaptive Strategies to Global Change for Water Management in Spain's Jucar Basin, J. Water Resour. Pl. Manage., 143, 04017005, https://doi.org/10.1061/(ASCE)WR.1943-5452.0000735, 2016.España, S., Alcalá, F. J., Vallejos, A., and Pulido-Bosch, A.: A GIS tool for modelling annual diffuse infiltration on a plot scale, Comput. Geosci., 54, 318–325, 2013.Feranec, J., Hazeu, G., Soukup, T., and Jaffrain, G.: Determining changes and flows in European landscapes 1990–2000 using CORINE land cover data, Appl. Geogr., 30, 19–35, 2010.Fujinawa, K.: Anthroscape of the Mediterranean Coastal Area in the Context of Hydrogeology: Projected Impacts of Climate Change, in: Sustainable Land Management, edited by: Kapur, S., Eswaran, H., and Blum, W., Springer, Berlin, Heidelberg, 311–332, https://doi.org/10.1007/978-3-642-14782-1_14, 2011.Gerrits, A. M. J., Savenije, H. H. G., Veling, E. J. M., and Pfister, L.: Analytical derivation of the Budyko curve based on rainfall characteristics and a simple evaporation model, Water Resour. Res., 45, W04403, https://doi.org/10.1029/2008WR007308, 2009.Gómez-Hernández, J. J., and Journel, A. G.: Joint simulation of MultiGaussian random variables, Geostatistics tróia∼92, edited by: Soares, A., in: Vol. 1, Kluwer, Dordrecht, the Netherlands, 85–94, 1993.Gómez-Hernández, J. J. and Srivastava, R. M.: ISIM3D: An ANSI-C three dimensional multiple indicator conditional simulation program, Comput. Geosci., 16, 395–440, 1990.Gorelick, S. M. and Zheng, C.: Global change and the groundwater management challenge, Water Resour. Res., 51, 3031–3051, https://doi.org/10.1002/2014WR016825, 2015.Green, T. R., Taniguchi, M., Kooi, H., Gurdak, J. J., Allen, D. M., Hiscock, K. M., Treidel, H., and Aureli, A.: Beneath the surface of global change: impacts of climate change on groundwater, J. Hydrol., 405, 532–560, https://doi.org/10.1016/j.jhydrol.2011.05.002, 2011.Grundmann, J., Schutze, N., and Schmitz, G. H.: Towards an integrated arid zone water management using simulation-based optimisation, Environ. Earth Sci., 65, 1381–1394, https://doi.org/10.1007/s12665-011-1253-z, 2012.Guo, F., Jiang, G., Polk, J. S., Huang, X. F., and Huang, S. Y.: Resilience of Groundwater Impacted by Land Use and Climate Change in a Karst Aquifer, South China, Water Environ. Res., 87, 1990–1998, 2015.Guo, W. and Langevin, C. D.: User's guide to SEAWAT: a computer program for simulation of three-dimensional variable-density groundwater flow, Report No. US Geol. Surv. Open File 01-434, US Geological Survey, Tallahassee, Florida, 2002.Haerter, J. O., Hagemann, S., Moseley, C., and Piani, C.: Climate model bias correction and the role of timescales, Hydrol. Earth Syst. Sci., 15, 1065–1079, https://doi.org/10.5194/hess-15-1065-2011, 2011.Herrera, S., Fernández, J., and Gutiérrez, J. M.: Update of the Spain02 Gridded Observational Dataset for Euro-CORDEX evaluation: Assessing the Effect of the Interpolation Methodology, Int. J. Climatol., 36, 900–908, https://doi.org/10.1002/joc.4391, 2016.Ketabchi, H., Mahmoodzadeh, D., Ataie-Ashtiani, B., and Simmons, C. T.: Sea-level rise impacts on seawater intrusion in coastal aquifers. Review and integration, J. Hydrol., 535, 235–255, 2016.Kirn, L., Mudarra, M., Marín, A., Andreo, B., and Hartmann, A.: Improved Assessment of Groundwater Recharge in a Mediterranean Karst Region: Andalusia, Spain, in: Renard P. and Bertrand, C., in: EuroKarst 2016, Neuchâtel, Advances in Karst Science, Springer, Cham, 117–125, https://doi.org/10.1007/978-3-319-45465-8_13, 2017.Llopis-Albert, C. and Capilla, J. E.: Stochastic inverse modelling of hydraulic conductivity fields taking into account independent stochastic structures: A 3D case study, J. Hydrol., 391, 277–288, https://doi.org/10.1016/j.jhydrol.2010.07.028, 2010.Llopis-Albert, C. and Pulido-Velazquez, D.: Discussion about the validity of sharp-interface models to deal with seawater intrusion in coastal aquifers, Hydrol. Process., 28, 3642–3654, https://doi.org/10.1002/hyp.9908, 2014.Llopis-Albert, C. and Pulido-Velazquez, D.: Using MODFLOW code to approach transient hydraulic head with a sharp-interface solution, Hydrol. Process., 29, 2052–2064, https://doi.org/10.1002/hyp.10354, 2015.Llopis-Albert, C., Merigó, J. M., and Xu, Y.: A coupled stochastic inverse/sharp interface seawater intrusion approach for coastal aquifers under groundwater parameter uncertainty, J. Hydrol., 540, 774–783, https://doi.org/10.1016/j.jhydrol.2016.06.065, 2016.Mantoglou, A., Papantoniou, M., and Giannoulopoulos, P.: Management of coastal aquifers based on nonlinear optimization and evolutionary algorithms, J. Hydrol., 297, 209–228, https://doi.org/10.1016/j.jhydrol.2004.04.011, 2004.Martínez-Valderrama, J., Ibáñez, J., Del Barrio, G., Sanjuán, M. E., Alcalá, F. J., Martínez-Vicente, S., Ruiz, A., and Puigdefábregas, J.: Present and future of desertification in Spain: implementation of a surveillance system to prevent land degradation, Sci. Total Environ., 563–564, 169–178, 2016.Matott, L. S., Babendreier, J. E., and Purucker, S. T.: Evaluating uncertainty in integrated environmental models: a review of concepts and tools, Water Resour. Res., 45, W06421, https://doi.org/10.1029/2008WR007301, 2009.McDonald, M. G. and Harbough, A. W.: A Modular Three-Dimensional Finite-Difference Groundwater Flow Model, US Geological Survey Technical Manual of Water Resources Investigation, Book 6, US Geological Survey, Reston, VA, p. 586, 1988.Molina, J. L., Pulido-Velázquez, D., García-Aróstegui, J. L., and Pulido-Velázquez, M.: Dynamic Bayesian Networks as a Decision Support tool for assessing Climate Change impacts on highly stressed groundwater systems, J. Hydrol., 479, 113–129, https://doi.org/10.1016/j.jhydrol.2012.11.038, 2013.Morell, I. and Giménez, E.: Hydrogeochemical analysis of salinization processes in the coastal aquifer of Oropesa (Castellón, Spain), Environ. Geol., 29, 118–131, 1997.Naji, A., Cheng, A. D., and Quazar, D.: BEM solution of stochastic seawater intrusion problems, Eng. Anal. Bound. Elements, 23, 529–537, https://doi.org/10.1016/S0955-7997(99)00012-0, 1999.PGOU Torreblanca: Plan General de Ordenación Urbana de Torreblanca, Ayuntamiento de Torreblanca, Torreblanca, 2009.Pulido-Velazquez, D., Garrote, L., Andreu, J., Martin-Carrasco, F. J., and Iglesias, A.: A methodology to diagnose the effect of climate change and to identify adaptive strategies to reduce its impacts in conjunctive-use systems at basin scale, J. Hydrol., 405, 110–122, https://doi.org/10.1016/j.jhydrol.2011.05.014, 2011.Pulido-Velazquez, D., García-Aróstegui, J. L., Molina, J. L., and Pulido-Velázquez, M.: Assessment of future groundwater recharge in semi-arid regions under climate change scenarios (Serral-Salinas aquifer, SE Spain). Could increased rainfall variability increase the recharge rate?, Hydrol. Process., 29, 828–844, https://doi.org/10.1002/hyp.10191, 2014.Pulido-Velazquez, D., Collados-Lara, A.-J., and Alcalá, F. J.: Assessing impacts of future potential climate change scenarios on aquifer recharge in continental Spain, J. Hydrol., https://doi.org/10.1016/j.jhydrol.2017.10.077, in press, 2017.Pulido-Velazquez, M., Peña-Haro, S., García-Prats, A., Mocholi-Almudever, A. F., Henriquez-Dole, L., Macian-Sorribes, H., and Lopez-Nicolas, A.: Integrated assessment of the impact of climate and land use changes on groundwater quantity and quality in the Mancha Oriental system (Spain), Hydrol. Earth Syst. Sci., 19, 1677–1693, https://doi.org/10.5194/hess-19-1677-2015, 2015.Räisänen, J. and Räty, O.: Projections of daily mean temperature variability in the future: cross-validation tests with ENSEMBLES regional climate simulations, Clim. Dynam., 41, 1553–1568, https://doi.org/10.1007/s00382-012-1515-9, 2013.Rasmussen, P., Sonnenborg, T. O., Goncear, G., and Hinsby, K.: Assessing impacts of climate change, SLR, and drainage canals on saltwater intrusion to coastal aquifer, Hydrol. Earth Syst. Sci., 17, 421–443, https://doi.org/10.5194/hess-17-421-2013, 2013.Renau-Pruñonosa, A., Morell, I., and Pulido-Velazquez, D.: A methodology to analyse and assess pumping management strategies in coastal aquifers to avoid degradation due to seawater intrusion problems, Water Resour. Manage., 30, 4823–4837, https://doi.org/10.1007/s11269-016-1455-y, 2016.Robins, N. S., Jones, H. K., and Ellis, J.: An aquifer management case study – The Chalk of the English South Downs, Water Resour. Manage., 13, 205–218, 1999.Rosenthal, E., Vinokurov, A., Ronen D., Magaritz M., and Moshkovitz, S.: Anthropogenically induced salinization of groundwater: A case study from the Coastal Plain aquifer of Israel, J. Contam. Hydrol., 11, 149–171, 1992.Roth, G. D.: Meteorología, Formaciones nubosas y otros fenómenos meteorológicos, Situaciones meteorológicas generales, Pronósticos del tiempo Barcelona, Ediciones Omega, Barcelona, Spain, p. 301, 2003.Shammas, M. I. and Thunvik, R.: Predictive simulation of flow and solute transport for managing the Salalah coastal aquifer, Oman, Water Resour. Manage., 23, 2941, 2009.Sola, F., Vallejos, A., Moreno, L., López-Geta, J. A., and Pulido-Bosch, A.: Identification of hydrogeochemical process linked to marine intrusion induced by pumping of a semi-confined Mediterranean coastal aquifer, Int. J. Environ. Sci. Technol., 10, 63–76, 2013.Spain02: A set of gridded precipitation and temperature datasets: http://www.meteo.unican.es/datasets/spain02/, last access: 28 May 2018.Sreekanth, J. and Datta, B.: Multi-objective management of saltwater intrusion in coastal aquifers using genetic programming and modular neural network based surrogate models, J. Hydrol., 39, 245–256, 2010.Tuñon, J.: Determinación experimental del balance hídrico del suelo y evaluación de la contaminación asociada a las prácticas agrícolas, PhD Thesis, Universitat Jaume I de Castellón, Castellón, Spain, 2000.Turc, L.: Water balance of soils: relationship between precipitation, evapotranspiration and runoff, Ann. Agron., 5, 49–595 and 6, 5–131, 1954.Turc, L.: Estimation of irrigation water requirements, potential evapotranspiration: A simple climatic formula evolved up to date, Ann. Agron. 12, 13—49, 1961.Unsal, B., Yagbasan, O., and Yazicigil, H.: Assessing the impacts of climate change on sustainable management of coastal aquifers, Environ. Earth Sci., 72, 2183–2193, 2014.Vallejos, A., Sola, F., and Pulido-Bosch, A.: Processes Influencing Groundwater Level and the Freshwater-Saltwater Interface in a Coastal Aquifer, Water Resour. Manage., 29, 679–697, https://doi.org/10.1007/s11269-014-0621-3, 2015.Watanabe, S., Kanae, S., Seto, S., Yeh, P. J.-F., Hirabayashi, Y., and Oki, T.: Intercomparison of bias-correction methods for monthly temperature and precipitation simulated by multiple climate models, J. Geophys. Res., 117, D23114, https://doi.org/10.1029/2012JD018192, 2012.Werner, A. D. and Simmons, C. T.: Impact of sea-level rise on sea water intrusion in coastal aquifers, Ground Water, 47, 197–204, 2009.Yechieli, Y. and Sivan, O.: The distribution of saline groundwater and its relation to the hydraulic conditions of aquifers and aquitards: example from Israel, Hydrogeol. J., 19, 71–87, 2011.Yechieli, Y., Shalev, E., Wollman, S., Kiro, Y., and Kafri, U.: Response of the Mediterranean and Dead Sea coastal aquifers to sea level variations, Water Resour. Res., 46, W12550, https://doi.org/10.1029/2009WR008708, 2010.Zheng, C. and Wang, P.: MT3DMS: A Modular Three-Dimensional Multispecies Transport Model for Simulation of Advection, Dispersion and Chemical Reactions of Contaminants in Groundwater Systems, Documentation and User's Guide, Alabama University, Tuscaloosa, Alabama, 1999

    Antioksidativni učinci N-acetilcisteina, lipoične kiseline, taurina i kurkumina u mišićnom tkivu šarana (Cyprinus carpio L.) tretiranih kadmijem

    Get PDF
    We investigated the muscle tissue of a teleost Cyprinus carpio L. to find out whether N-acetylcysteine (NAC), alpha-lipoic acid (LA), taurine (TAU), and curcumin (CUR) were able to counteract oxidative stress induced by acute exposure to cadmium (Cd). The muscle tissue was dissected 96 h after a single intraperitoneal injection of Cd (5 mg kg-1) and of antioxidant substances (50 mg kg-1). Using spectrophotometry, we determined the glutathione redox status, lipid peroxidation levels and the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione disulphide reductase (GR). Accumulation of Cd in the muscle was analysed using inductively coupled plasma - optical emission spectrometry (ICP-OES). All substances lowered Cd levels in the following order of effi ciency; LA=NAC>TAU=CUR. Cadmium increased SOD activity, but CAT activity declined, regardless of antioxidant treatment. Treatment with CUR induced GPx activity. Treatment with TAU lowered Cd due to higher total glutathione (tGSH). The most effective substances on lipid peroxidation were LA and NAC due to a greater Cd-lowering potential. It seems that the protective role of TAU, LA, and NAC is not necessarily associated with antioxidant enzymes, but rather with their own activity.Cilj istraživanja bio je utvrditi mogu li N-acetilcistein (NAC), α-lipoična kiselina (LA), taurin (TAU) i kurkumin (CUR) svojim antioksidativnim djelovanjem smanjiti razinu oksidativnog stresa u mišićnom tkivu šarana (Cyprinus carpio L.) akutno otrovanih kadmijem. Uzorci mišićnog tkiva skupljeni su 96 h nakon što su ribama intraperitonealno injicirani kadmij (5 mg kg-1) i ispitivani antioksidansi (50 mg kg-1). Primjenom spektrofotometrijskih metoda izmjereni su redoks status glutationa, razine lipidne peroksidacije te aktivnosti enzima superoksid dismutaze (SOD), katalaze (CAT), glutation peroksidaze (GPx) i glutation disulfi d reduktaze (GR). Maseni udio kadmija u mišićnom tkivu izmjeren je s pomoću metode induktivno spregnute plazme – optičke emisijske spektrometrije (ICP-OES). Ispitivani spojevi smanjili su nakupljanje kadmija u tkivu šarana sljedećim redoslijedom: LA=NAC>TAU=CUR. Tretman šarana kadmijem izazvao je porast aktivnosti SOD, ali se aktivnost CAT smanjila bez obzira na primjenu antioksidativnih spojeva. Dodatak CUR pojačao je aktivnost GPx. Dodatak TAU povećao je razinu ukupnoga glutationa te smanjio nakupljanje kadmija. Svi spojevi osim CUR smanjili su razinu lipidne peroksidacije te pretpostavljamo da su LA i NAC pridonijeli detoksifi kaciji kadmija. Rezultati istraživanja upućuju na to da testirani spojevi, osim CUR, imaju antioksidativni učina

    A coupled stochastic inverse/sharp interface seawater intrusion approach for coastal aquifers under groundwater parameter uncertainty

    Full text link
    © 2016 Elsevier B.V. This paper presents an alternative approach to deal with seawater intrusion problems, that overcomes some of the limitations of previous works, by coupling the well-known SWI2 package for MODFLOW with a stochastic inverse model named GC method. On the one hand, the SWI2 allows a vertically integrated variable-density groundwater flow and seawater intrusion in coastal multi-aquifer systems, and a reduction in number of required model cells and the elimination of the need to solve the advective-dispersive transport equation, which leads to substantial model run-time savings. On the other hand, the GC method allows dealing with groundwater parameter uncertainty by constraining stochastic simulations to flow and mass transport data (i.e., hydraulic conductivity, freshwater heads, saltwater concentrations and travel times) and also to secondary information obtained from expert judgment or geophysical surveys, thus reducing uncertainty and increasing reliability in meeting the environmental standards. The methodology has been successfully applied to a transient movement of the freshwater-seawater interface in response to changing freshwater inflow in a two-aquifer coastal aquifer system, where an uncertainty assessment has been carried out by means of Monte Carlo simulation techniques. The approach also allows partially overcoming the neglected diffusion and dispersion processes after the conditioning process since the uncertainty is reduced and results are closer to available data

    Effect of scCO2-brine mixture on injectivity and storage capacity in rock samples of naturally fractured carbonate formations

    Full text link
    [EN] The presence of natural fractures in the formation and its degree of heterogeneity condition the injection of CO2 into the aquifer as they affect the migration processes and its storage capacity. In ATAP experimental facility the petrophysical behavior of two carbonate formations was studied, with different proportions of limestone, dolomite, quartz and anhydrite and fissures sealed mainly by potassium aluminosilicates and iron sulphides. Actual storage conditions (135/141 bar and 44/46 degrees C) corresponding to a depth of around 1500 m and continuous injection at a constant flow rate of 1 cc/min of 10% and 15% of HCl, HCl/Acetic (CH3COOH) 10%/10% and scCO2 (supercritical CO2)/brine 50%/50%, was applied to the brine saturated rock samples (core-flooding). Considering laminar flow through the fractures, the flow injected is proportional to the pressure drop according to the "cubic law" that takes into account the width and length of the fractures. This is used to evaluate the injectivity of the storage. The variations in the pressure drop are due to the dragging of detached fines in the dissolution of the carbonates of the filled fissures that can cause their opening or blocking. The efficacy of pure scCO2 enriched brine injection was determined to dissolve the carbonates of the store formation compared to other methods such as the injection of acids used in the oil industry for the stimulation of producing wells. Scanning Electron Microscope (SEM) studies of the injection surfaces and Computerized Tomography (CT) analysis of the samples before and after injection of the acid mixtures have been performed. The dissolution facilitates the injectivity and increases the capacity favoring the tightness of the storage by the phenomenon of controlled dissolution-precipitation of the carbonates.Valle, LM.; Grima, C.; Rodríguez, R.; Llopis-Albert, C. (2020). Effect of scCO2-brine mixture on injectivity and storage capacity in rock samples of naturally fractured carbonate formations. Journal of Natural Gas Science and Engineering. 81:1-16. https://doi.org/10.1016/j.jngse.2020.103452S11681Abba, M. K., Abbas, A. J., Nasr, G. G., Al-Otaibi, A., Burby, M., Saidu, B., & Suleiman, S. M. (2019). Solubility trapping as a potential secondary mechanism for CO2 sequestration during enhanced gas recovery by CO2 injection in conventional natural gas reservoirs: An experimental approach. Journal of Natural Gas Science and Engineering, 71, 103002. doi:10.1016/j.jngse.2019.103002Al-Khulaifi, Y., Lin, Q., Blunt, M. J., & Bijeljic, B. (2018). Reservoir-condition pore-scale imaging of dolomite reaction with supercritical CO 2 acidified brine: Effect of pore-structure on reaction rate using velocity distribution analysis. International Journal of Greenhouse Gas Control, 68, 99-111. doi:10.1016/j.ijggc.2017.11.011Alcalde, J., Marzán, I., Saura, E., Martí, D., Ayarza, P., Juhlin, C., … Carbonell, R. (2014). 3D geological characterization of the Hontomín CO2 storage site, Spain: Multidisciplinary approach from seismic, well-log and regional data. Tectonophysics, 627, 6-25. doi:10.1016/j.tecto.2014.04.025André, L., Audigane, P., Azaroual, M., & Menjoz, A. (2007). Numerical modeling of fluid–rock chemical interactions at the supercritical CO2–liquid interface during CO2 injection into a carbonate reservoir, the Dogger aquifer (Paris Basin, France). Energy Conversion and Management, 48(6), 1782-1797. doi:10.1016/j.enconman.2007.01.006Bachu, S., & Bennion, D. B. (2008). Interfacial Tension between CO2, Freshwater, and Brine in the Range of Pressure from (2 to 27) MPa, Temperature from (20 to 125) °C, and Water Salinity from (0 to 334 000) mg·L−1. Journal of Chemical & Engineering Data, 54(3), 765-775. doi:10.1021/je800529xBarkman, J. H., Abrams, A., Darley, H. C. H., & Hill, H. J. (1975). An Oil-Coating Process To Stabilize Clays in Fresh Waterflooding Operations(includes associated paper 6405 ). Journal of Petroleum Technology, 27(09), 1053-1059. doi:10.2118/4786-paCrockford, P., Telmer, K., & Best, M. (2014). Dissolution kinetics of Devonian carbonates at circum-neutral pH, 50bar pCO2, 105°C, and 0.4M: The importance of complex brine chemistry on reaction rates. Applied Geochemistry, 41, 128-134. doi:10.1016/j.apgeochem.2013.12.008Chen, D., Pan, Z., & Ye, Z. (2015). Dependence of gas shale fracture permeability on effective stress and reservoir pressure: Model match and insights. Fuel, 139, 383-392. doi:10.1016/j.fuel.2014.09.018Chen, Y., Hu, S., Hu, R., & Zhou, C. (2015). Estimating hydraulic conductivity of fractured rocks from high‐pressure packer tests with an Izbash’s law‐based empirical model. Water Resources Research, 51(4), 2096-2118. doi:10.1002/2014wr016458Chequer, L., Vaz, A., & Bedrikovetsky, P. (2018). Injectivity decline during low-salinity waterflooding due to fines migration. Journal of Petroleum Science and Engineering, 165, 1054-1072. doi:10.1016/j.petrol.2018.01.012De Dios, J. C., Delgado, M. A., Marín, J. A., Martinez, C., Ramos, A., Salvador, I., & Valle, L. (2016). Short-term effects of impurities in the CO 2 stream injected into fractured carbonates. International Journal of Greenhouse Gas Control, 54, 727-736. doi:10.1016/j.ijggc.2016.08.032De Dios, J. C., Delgado, M. A., Martínez, C., Ramos, A., Álvarez, I., Marín, J. A., & Salvador, I. (2017). Hydraulic characterization of fractured carbonates for CO 2 geological storage: Experiences and lessons learned in Hontomín Technology Development Plant. International Journal of Greenhouse Gas Control, 58, 185-200. doi:10.1016/j.ijggc.2017.01.008De Silva, G. P. D., Ranjith, P. G., & Perera, M. S. A. (2015). Geochemical aspects of CO2 sequestration in deep saline aquifers: A review. Fuel, 155, 128-143. doi:10.1016/j.fuel.2015.03.045Dong, J.-J., Hsu, J.-Y., Wu, W.-J., Shimamoto, T., Hung, J.-H., Yeh, E.-C., … Sone, H. (2010). Stress-dependence of the permeability and porosity of sandstone and shale from TCDP Hole-A. International Journal of Rock Mechanics and Mining Sciences, 47(7), 1141-1157. doi:10.1016/j.ijrmms.2010.06.019Farajzadeh, R., Bedrikovetsky, P., Lotfollahi, M., & Lake, L. W. (2016). Simultaneous sorption and mechanical entrapment during polymer flow through porous media. Water Resources Research, 52(3), 2279-2298. doi:10.1002/2015wr017885Farquhar, S. M., Pearce, J. K., Dawson, G. K. W., Golab, A., Sommacal, S., Kirste, D., … Golding, S. D. (2015). A fresh approach to investigating CO 2 storage: Experimental CO 2 –water–rock interactions in a low-salinity reservoir system. Chemical Geology, 399, 98-122. doi:10.1016/j.chemgeo.2014.10.006Guo, Z., Vu, P. N. H., & Hussain, F. (2018). A laboratory study of the effect of creep and fines migration on coal permeability during single-phase flow. International Journal of Coal Geology, 200, 61-76. doi:10.1016/j.coal.2018.10.009Holzheid, A. (2016). Dissolution kinetics of selected natural minerals relevant to potential CO2-injection sites − Part 1: A review. Geochemistry, 76(4), 621-641. doi:10.1016/j.chemer.2016.09.007Holzheid, A. (2016). Dissolution kinetics of selected natural minerals relevant to potential CO2-injection sites – Part 2: Dissolution and alteration of carbonates and feldspars in CO2-bearing brines. Geochemistry, 76(4), 643-657. doi:10.1016/j.chemer.2016.09.008Huang, F., Kang, Y., You, L., Li, X., & You, Z. (2018). Massive fines detachment induced by moving gas-water interfaces during early stage two-phase flow in coalbed methane reservoirs. Fuel, 222, 193-206. doi:10.1016/j.fuel.2018.02.142Iding, M., & Ringrose, P. (2010). Evaluating the impact of fractures on the performance of the In Salah CO2 storage site. International Journal of Greenhouse Gas Control, 4(2), 242-248. doi:10.1016/j.ijggc.2009.10.016Jia, Y., Lu, Y., Elsworth, D., Fang, Y., & Tang, J. (2018). Surface characteristics and permeability enhancement of shale fractures due to water and supercritical carbon dioxide fracturing. Journal of Petroleum Science and Engineering, 165, 284-297. doi:10.1016/j.petrol.2018.02.018Kampman, N., Bickle, M., Wigley, M., & Dubacq, B. (2014). Fluid flow and CO2–fluid–mineral interactions during CO2-storage in sedimentary basins. Chemical Geology, 369, 22-50. doi:10.1016/j.chemgeo.2013.11.012Ketzer, J. M., Iglesias, R., Einloft, S., Dullius, J., Ligabue, R., & de Lima, V. (2009). Water–rock–CO2 interactions in saline aquifers aimed for carbon dioxide storage: Experimental and numerical modeling studies of the Rio Bonito Formation (Permian), southern Brazil. Applied Geochemistry, 24(5), 760-767. doi:10.1016/j.apgeochem.2009.01.001Khilar, K. C., Fogler, H. S., & Ahluwalia, J. S. (1983). Sandstone water sensitivity: Existence of a critical rate of salinity decrease for particle capture. Chemical Engineering Science, 38(5), 789-800. doi:10.1016/0009-2509(83)80188-2Kim, J., & Moridis, G. J. (2015). Numerical analysis of fracture propagation during hydraulic fracturing operations in shale gas systems. International Journal of Rock Mechanics and Mining Sciences, 76, 127-137. doi:10.1016/j.ijrmms.2015.02.013Lamy-Chappuis, B., Angus, D., Fisher, Q., Grattoni, C., & Yardley, B. W. D. (2014). Rapid porosity and permeability changes of calcareous sandstone due to CO2-enriched brine injection. Geophysical Research Letters, 41(2), 399-406. doi:10.1002/2013gl058534Le Gallo, Y., & de Dios, J. (2018). Geological Model of a Storage Complex for a CO2 Storage Operation in a Naturally-Fractured Carbonate Formation. Geosciences, 8(9), 354. doi:10.3390/geosciences8090354Lenormand, R., Touboul, E., & Zarcone, C. (1988). Numerical models and experiments on immiscible displacements in porous media. Journal of Fluid Mechanics, 189, 165-187. doi:10.1017/s0022112088000953Li, N., Dai, J., Liu, C., Liu, P., Zhang, Y., Luo, Z., & Zhao, L. (2015). Feasibility study on application of volume acid fracturing technology to tight gas carbonate reservoir development. Petroleum, 1(3), 206-216. doi:10.1016/j.petlm.2015.06.002Liu, R., Yu, L., & Jiang, Y. (2016). Fractal analysis of directional permeability of gas shale fracture networks: A numerical study. Journal of Natural Gas Science and Engineering, 33, 1330-1341. doi:10.1016/j.jngse.2016.05.043Middleton, R. S., Carey, J. W., Currier, R. P., Hyman, J. D., Kang, Q., Karra, S., … Viswanathan, H. S. (2015). Shale gas and non-aqueous fracturing fluids: Opportunities and challenges for supercritical CO2. Applied Energy, 147, 500-509. doi:10.1016/j.apenergy.2015.03.023Ogaya, X., Ledo, J., Queralt, P., Marcuello, Á., & Quintà, A. (2013). First geoelectrical image of the subsurface of the Hontomín site (Spain) for CO2 geological storage: A magnetotelluric 2D characterization. International Journal of Greenhouse Gas Control, 13, 168-179. doi:10.1016/j.ijggc.2012.12.023Othman, F., Yu, M., Kamali, F., & Hussain, F. (2018). Fines migration during supercritical CO2 injection in sandstone. Journal of Natural Gas Science and Engineering, 56, 344-357. doi:10.1016/j.jngse.2018.06.001Park, Y.-C., Kim, S., Lee, J. H., & Shinn, Y. J. (2019). Effect of reducing irreducible water saturation in a near-well region on CO2 injectivity and storage capacity. International Journal of Greenhouse Gas Control, 86, 134-145. doi:10.1016/j.ijggc.2019.04.014Patil, S., Tawfiq, K., & Chen, G. (2011). COLLOID RELEASE AND TRANSPORT IN AGRICULTURAL SOIL AS IMPACTED BY SOLUTION CHEMISTRY. Journal of Urban and Environmental Engineering, 5(2), 84-90. doi:10.4090/juee.2011.v5n2.084090Peysson, Y., André, L., & Azaroual, M. (2014). Well injectivity during CO2 storage operations in deep saline aquifers—Part 1: Experimental investigation of drying effects, salt precipitation and capillary forces. International Journal of Greenhouse Gas Control, 22, 291-300. doi:10.1016/j.ijggc.2013.10.031Vu, H. P., Black, J. R., & Haese, R. R. (2018). The geochemical effects of O2 and SO2 as CO2 impurities on fluid-rock reactions in a CO2 storage reservoir. International Journal of Greenhouse Gas Control, 68, 86-98. doi:10.1016/j.ijggc.2017.11.001Pokrovsky, O. S., Golubev, S. V., & Schott, J. (2005). Dissolution kinetics of calcite, dolomite and magnesite at 25 °C and 0 to 50 atm pCO2. Chemical Geology, 217(3-4), 239-255. doi:10.1016/j.chemgeo.2004.12.012Quesada, S., Robles, S., & Rosales, I. (2005). Depositional architecture and transgressive–regressive cycles within Liassic backstepping carbonate ramps in the Basque–Cantabrian basin, northern Spain. Journal of the Geological Society, 162(3), 531-548. doi:10.1144/0016-764903-041Rabbani, E., Davarpanah, A., & Memariani, M. (2018). An experimental study of acidizing operation performances on the wellbore productivity index enhancement. Journal of Petroleum Exploration and Production Technology, 8(4), 1243-1253. doi:10.1007/s13202-018-0441-8Russell, T., Pham, D., Neishaboor, M. T., Badalyan, A., Behr, A., Genolet, L., … Bedrikovetsky, P. (2017). Effects of kaolinite in rocks on fines migration. Journal of Natural Gas Science and Engineering, 45, 243-255. doi:10.1016/j.jngse.2017.05.020Russell, T., Wong, K., Zeinijahromi, A., & Bedrikovetsky, P. (2018). Effects of delayed particle detachment on injectivity decline due to fines migration. Journal of Hydrology, 564, 1099-1109. doi:10.1016/j.jhydrol.2018.07.067Shen, C., Bradford, S. A., Li, T., Li, B., & Huang, Y. (2018). Can nanoscale surface charge heterogeneity really explain colloid detachment from primary minima upon reduction of solution ionic strength? Journal of Nanoparticle Research, 20(6). doi:10.1007/s11051-018-4265-8Shi, Y., & Wang, C.-Y. (1986). Pore pressure generation in sedimentary basins: Overloading versus aquathermal. Journal of Geophysical Research, 91(B2), 2153. doi:10.1029/jb091ib02p02153Soong, Y., Goodman, A. ., McCarthy-Jones, J. ., & Baltrus, J. . (2004). Experimental and simulation studies on mineral trapping of CO2 with brine. Energy Conversion and Management, 45(11-12), 1845-1859. doi:10.1016/j.enconman.2003.09.029Takenouchi, S., & Kennedy, G. C. (1964). The binary system H 2 O-CO 2 at high temperatures and pressures. American Journal of Science, 262(9), 1055-1074. doi:10.2475/ajs.262.9.1055Tavani, S. (2012). Plate kinematics in the Cantabrian domain of the Pyrenean orogen. Solid Earth, 3(2), 265-292. doi:10.5194/se-3-265-2012Valle, L.M., Martínez, C., 2015. Patente Nacional: Equipo para ensayos petrofísicos. P201231913.2015.Valle, L. M., Rodríguez, R., Grima, C., & Martínez, C. (2018). Effects of supercritical CO2 injection on sandstone wettability and capillary trapping. International Journal of Greenhouse Gas Control, 78, 341-348. doi:10.1016/j.ijggc.2018.09.005Wang, L., Yao, B., Xie, H., Winterfeld, P. H., Kneafsey, T. J., Yin, X., & Wu, Y.-S. (2017). CO2 injection-induced fracturing in naturally fractured shale rocks. Energy, 139, 1094-1110. doi:10.1016/j.energy.2017.08.031Yan, W., Crandall, D., Bruner, K., Ning, W., Gill, M., Xiaochun, L., & Bromhal, G. (2013). Core and Pore Scale Characterization of Liujiagou Outcrop Sandstone, Ordos basin, China for CO2 Aquifer Storage. Energy Procedia, 37, 5055-5062. doi:10.1016/j.egypro.2013.06.419Yan, Q., Lemanski, C., Karpyn, Z. T., & Ayala, L. F. (2015). Experimental investigation of shale gas production impairment due to fracturing fluid migration during shut-in time. Journal of Natural Gas Science and Engineering, 24, 99-105. doi:10.1016/j.jngse.2015.03.017Yang, D., Tontiwachwuthikul, P., & Gu, Y. (2005). Interfacial Tensions of the Crude Oil + Reservoir Brine + CO2 Systems at Pressures up to 31 MPa and Temperatures of 27 °C and 58 °C. Journal of Chemical & Engineering Data, 50(4), 1242-1249. doi:10.1021/je0500227Yang, D., Gu, Y., & Tontiwachwuthikul, P. (2007). Wettability Determination of the Reservoir Brine−Reservoir Rock System with Dissolution of CO2 at High Pressures and Elevated Temperatures. Energy & Fuels, 22(1), 504-509. doi:10.1021/ef700383xYuan, B., Wood, D. A., & Yu, W. (2015). Stimulation and hydraulic fracturing technology in natural gas reservoirs: Theory and case studies (2012–2015). Journal of Natural Gas Science and Engineering, 26, 1414-1421. doi:10.1016/j.jngse.2015.09.001Yue, H., Liu, F., Xue, H., Sang, Y., Zhou, C., & Wang, Y. (2018). Numerical simulation and field application of diverting acid acidizing in the Lower Cambrian Longwangmiao Fm gas reservoirs in the Sichuan Basin. Natural Gas Industry B, 5(3), 204-211. doi:10.1016/j.ngib.2018.04.007Zeinijahromi, A., Farajzadeh, R., (Hans) Bruining, J., & Bedrikovetsky, P. (2016). Effect of fines migration on oil–water relative permeability during two-phase flow in porous media. Fuel, 176, 222-236. doi:10.1016/j.fuel.2016.02.066Zhang, X., Ge, J., Kamali, F., Othman, F., Wang, Y., & Le-Hussain, F. (2020). Wettability of sandstone rocks and their mineral components during CO2 injection in aquifers: Implications for fines migration. Journal of Natural Gas Science and Engineering, 73, 103050. doi:10.1016/j.jngse.2019.103050Zhao, L., Pan, Y., Liu, Y., Meng, X., Guo, Y., & Liu, P. (2018). Research and performance evaluation on an HA integrated acid system for sandstone acidizing. Natural Gas Industry B, 5(2), 156-161. doi:10.1016/j.ngib.2018.04.002Zhao, Z., Jing, L., Neretnieks, I., & Moreno, L. (2011). Numerical modeling of stress effects on solute transport in fractured rocks. Computers and Geotechnics, 38(2), 113-126. doi:10.1016/j.compgeo.2010.10.00
    corecore