404 research outputs found

    Silencing of the Violaxanthin De-Epoxidase Gene in the Diatom Phaeodactylum tricornutum Reduces Diatoxanthin Synthesis and Non-Photochemical Quenching

    Get PDF
    Diatoms are a major group of primary producers ubiquitous in all aquatic ecosystems. To protect themselves from photooxidative damage in a fluctuating light climate potentially punctuated with regular excess light exposures, diatoms have developed several photoprotective mechanisms. The xanthophyll cycle (XC) dependent non-photochemical chlorophyll fluorescence quenching (NPQ) is one of the most important photoprotective processes that rapidly regulate photosynthesis in diatoms. NPQ depends on the conversion of diadinoxanthin (DD) into diatoxanthin (DT) by the violaxanthin de-epoxidase (VDE), also called DD de-epoxidase (DDE). To study the role of DDE in controlling NPQ, we generated transformants of P. tricornutum in which the gene (Vde/Dde) encoding for DDE was silenced. RNA interference was induced by genetic transformation of the cells with plasmids containing either short (198 bp) or long (523 bp) antisense (AS) fragments or, alternatively, with a plasmid mediating the expression of a self-complementary hairpin-like construct (inverted repeat, IR). The silencing approaches generated diatom transformants with a phenotype clearly distinguishable from wildtype (WT) cells, i.e. a lower degree as well as slower kinetics of both DD de-epoxidation and NPQ induction. Real-time PCR based quantification of Dde transcripts revealed differences in transcript levels between AS transformants and WT cells but also between AS and IR transformants, suggesting the possible presence of two different gene silencing mediating mechanisms. This was confirmed by the differential effect of the light intensity on the respective silencing efficiency of both types of transformants. The characterization of the transformants strengthened some of the specific features of the XC and NPQ and confirmed the most recent mechanistic model of the DT/NPQ relationship in diatoms

    Content in fatty acids and carotenoids in phytoplankton blooms during the seasonal sea ice retreat in Hudson Bay complex, Canada.

    Get PDF
    The Hudson Bay complex (HBC) is home to numerous indigenous communities that traditionally have relied heavily on its marine resources. The nutritional quality and stocks of the entire HBC food web depend in large part on the phytoplankton production of bioactive molecules (long chain polyunsaturated fatty acids and carotenoids) and their transfer through trophic levels. The purpose of this study was thus to determine which molecules were produced during spring phytoplankton blooms, as well as the environmental factors driving this production. We investigated 21 stations in 5 sub-regions of the HBC. At the time of sampling, the sub-regions studied had different environmental settings (e.g., ice cover, nutrients, seawater salinity and temperature) conditioning their bloom stages. Pre- and post-bloom stages were associated with relatively low concentrations of bioactive molecules (either fatty acids or carotenoids). In contrast, the highest concentrations of bioactive molecules (dominated by eicosapentaenoic acid and fucoxanthin) were associated with the diatom bloom that typically occurs at the ice edge when silicates remain available. Interestingly, the large riverine inputs in eastern Hudson Bay led to a change in protist composition (larger contribution of Dinophyceae), resulting in lower while more diverse content of bioactive molecules, whether fatty acids (e.g., aa-linolenic acid) or carotenoids (e.g., peridinin). As greater stratification of the HBC is expected in the future, we suggest that a mixotrophic/heterotrophic flagellate-based food web would become more prevalent, resulting in a smaller supply of bioactive molecules for the food web

    Coincidence measurement of residues and light particles in the reaction 56Fe+p at 1 GeV per nucleon with SPALADIN

    Full text link
    The spallation of 56^{56}Fe in collisions with hydrogen at 1 A GeV has been studied in inverse kinematics with the large-aperture setup SPALADIN at GSI. Coincidences of residues with low-center-of-mass kinetic energy light particles and fragments have been measured allowing the decomposition of the total reaction cross-section into the different possible de-excitation channels. Detailed information on the evolution of these de-excitation channels with excitation energy has also been obtained. The comparison of the data with predictions of several de-excitation models coupled to the INCL4 intra-nuclear cascade model shows that only GEMINI can reasonably account for the bulk of collected results, indicating that in a light system with no compression and little angular momentum, multifragmentation might not be necessary to explain the data.Comment: 4 pages, 5 figures, revised version accepted in Phys. Rev. Let

    Time-dependent upregulation of electron transport with concomitant induction of regulated excitation dissipation in Haslea diatoms

    Get PDF
    International audiencePhotoacclimation by strains of Haslea "blue" diatom species H. ostrearia and H. silbo sp. nov. ined. was investigated with rapid light curves and induction-recovery curves using fast repetition rate fluorescence. Cultures were grown to exponential phase under 50 µmol m −2 s −1 photosynthetic available radiation (PAR) and then exposed to non-sequential rapid light curves where, once electron transport rate (ETR) had reached saturation, light intensity was decreased and then further increased prior to returning to near growth light intensity. The non-sequential rapid light curve revealed that ETR was not proportional to the instantaneously applied light intensity, due to rapid photoacclimation. Changes in the effective absorption cross sections for open PSII reaction centres (σ PSII ′) or reaction centre connectivity (ρ) did not account for the observed increases in ETR under extended high light. σ PSII ′ in fact decreased as a function of a time-dependent induction of regulated excitation dissipation Y(NPQ), once cells were at or above a PAR coinciding with saturation of ETR. Instead, the observed increases in ETR under extended high light were explained by an increase in the rate of PSII reopening, i.e. Q A − oxidation. This acceleration of electron transport was strictly light dependent and relaxed within seconds after a return to low light or darkness. The time-dependent nature of ETR upregulation and regulated NPQ induction was verified using induction-recovery curves. Our findings show a time-dependent induction of excitation dissipation, in parallel with very rapid photoacclimation of electron transport, which combine to make ETR independent of short-term changes in PAR. This supports a selective advantage for these diatoms when exposed to fluctuating light in their environment

    Pion radii in nonlocal chiral quark model

    Full text link
    The electromagnetic radius of the charged pion and the transition radius of the neutral pion are calculated in the framework of the nonlocal chiral quark model. It is shown in this model that the contributions of vector mesons to the pion radii are noticeably suppressed in comparison with a similar contribution in the local Nambu--Jona-Lasinio model. The form-factor for the process gamma*pi+pi- is calculated for the -1 GeV^2<q^2<1.6 GeV^2. Our results are in satisfactory agreement with experimental data.Comment: 7 pages, 7 figure

    Impact of chlororespiration on non-photochemical quenching of chlorophyll fluorescence and on the regulation of the diadinoxanthin cycle in the diatom Thalassiosira pseudonana

    Get PDF
    In diatoms, metabolic activity during long dark periods leads to a chlororespiratory electron flow, which is accompanied by the build-up of a proton gradient strong enough to activate the diadinoxanthin (Ddx) de-epoxidation reaction of the Ddx cycle. In the present study, the impact of chlororespiration on non-photochemical quenching (NPQ) of chlorophyll fluorescence and the regulation of the Ddx cycle in the diatom Thalassiosira pseudonana was investigated by manipulation of the redox state of the photosynthetic electron transport chain during darkness. The response of a transfer of T. pseudonana cells from growth light conditions to 60 min darkness was found to depend on oxygen: in its presence there was no significant reduction of the PQ pool and no de-epoxidation of Ddx to diatoxanthin (Dtx). Under anaerobic conditions a high reduction state of the electron transport chain and a slow but steady de-epoxidation of Ddx was observed, which resulted in a significant accumulation of Dtx after 60 min of anaerobiosis. Unexpectedly, this high concentration of Dtx did not induce a correspondingly high NPQ as it would have been observed with Dtx formed under high light conditions. However, the sensitivity of NPQ to Dtx in cells kept under dark anaerobic conditions increased during reoxygenation and far-red (FR) light illumination. The results are discussed with respect to the activation of the de-epoxidation reaction and the formation of NPQ and their dependence on the extent of the proton gradient across the thylakoid membrane
    corecore