686 research outputs found

    General technique of calculating drift velocity and diffusion coefficient in arbitrary periodic systems

    Full text link
    We develop a practical method of computing the stationary drift velocity V and the diffusion coefficient D of a particle (or a few particles) in a periodic system with arbitrary transition rates. We solve this problem both in a physically relevant continuous-time approach as well as for models with discrete-time kinetics, which are often used in computer simulations. We show that both approaches yield the same value of the drift, but the difference between the diffusion coefficients obtained in each of them equals V*V/2. Generalization to spaces of arbitrary dimension and several applications of the method are also presented.Comment: 12 pages + 2 figures, RevTeX. Submitted to J. Phys. A: Math. Ge

    Relaxation at late stages in an entropy barrier model for glassy systems

    Full text link
    The ground state dynamics of an entropy barrier model proposed recently for describing relaxation of glassy systems is considered. At stages of evolution the dynamics can be described by a simple variant of the Ehrenfest urn model. Analytical expression for the relaxation times from an arbitrary state to the ground state is derived. Upper and lower bounds for the relaxation times as a function of system size are obtained.Comment: 9 pages no figures. to appear in J.Phys. A: Math. and Ge

    The Performance of Alfalfa Synthetics in the First and Advanced Generations

    Get PDF
    During alfalfa breeding investigations conducted at the Nebraska Agricultural Experiment Station, numerous superior clones were selected and tested as clones, and in polycross progeny tests. Information was needed on the performance of synthetic varieties in the first and advanced generations, on the optimum number of clones to include in a synthetic variety, and on parent-progeny relationships. Clones with high general combining ability for forage yield as measured by polycross progeny tests, and in certain instances specific combining ability based on single-cross tests, were intercrossed in various ways to produce synthetic varieties. A group of synthetics varying in number of parents from 2 to 6 clones, having in some instances certain clones as common parents, was tested initially in the first generation of synthesis (referred to as Syn-1 from here on), later in the Syn-1 versus the Syn-2, and in some instances in the Syn-1, Syn-2, and Syn-3, and ultimately in the Syn-1,-2,-3, and -4 generations. The purposes of this bulletin are to report (1) comparative results obtained in yield trials involving the Syn-1,-2,-3, and -4 generations of 5 two-clone and 14 multiple-clone synthetics at Lincoln, Nebraska, and Ithaca, New York, and (2) parent-progeny relationships

    Characteristics of ferroelectric-ferroelastic domains in N{\'e}el-type skyrmion host GaV4_4S8_8

    Get PDF
    GaV4_4S8_8 is a multiferroic semiconductor hosting N{\'e}el-type magnetic skyrmions dressed with electric polarization. At Ts_s = 42K, the compound undergoes a structural phase transition of weakly first-order, from a non-centrosymmetric cubic phase at high temperatures to a polar rhombohedral structure at low temperatures. Below Ts_s, ferroelectric domains are formed with the electric polarization pointing along any of the four <111>\left< 111 \right> axes. Although in this material the size and the shape of the ferroelectric-ferroelastic domains may act as important limiting factors in the formation of the N{\'e}el-type skyrmion lattice emerging below TC_C=13\:K, the characteristics of polar domains in GaV4_4S8_8 have not been studied yet. Here, we report on the inspection of the local-scale ferroelectric domain distribution in rhombohedral GaV4_4S8_8 using low-temperature piezoresponse force microscopy. We observed mechanically and electrically compatible lamellar domain patterns, where the lamellae are aligned parallel to the (100)-type planes with a typical spacing between 100 nm-1.2 μ\mum. We expect that the control of ferroelectric domain size in polar skyrmion hosts can be exploited for the spatial confinement and manupulation of N{\'e}el-type skyrmions

    Mean-Field Treatment of the Many-Body Fokker-Planck Equation

    Full text link
    We review some properties of the stationary states of the Fokker - Planck equation for N interacting particles within a mean field approximation, which yields a non-linear integrodifferential equation for the particle density. Analytical results show that for attractive long range potentials the steady state is always a precipitate containing one cluster of small size. For arbitrary potential, linear stability analysis allows to state the conditions under which the uniform equilibrium state is unstable against small perturbations and, via the Einstein relation, to define a critical temperature Tc separating two phases, uniform and precipitate. The corresponding phase diagram turns out to be strongly dependent on the pair-potential. In addition, numerical calculations reveal that the transition is hysteretic. We finally discuss the dynamics of relaxation for the uniform state suddenly cooled below Tc.Comment: 13 pages, 8 figure

    Luneburg lens in silicon photonics

    Get PDF
    The Luneburg lens is an aberration-free lens that focuses light from all directions equally well. We fabricated and tested a Luneburg lens in silicon photonics. Such fully-integrated lenses may become the building blocks of compact Fourier optics on chips. Furthermore, our fabrication technique is sufficiently versatile for making perfect imaging devices on silicon platforms. (C) 2011 Optical Society of AmericaPublisher PDFPeer reviewe

    Lattice gas model in random medium and open boundaries: hydrodynamic and relaxation to the steady state

    Full text link
    We consider a lattice gas interacting by the exclusion rule in the presence of a random field given by i.i.d. bounded random variables in a bounded domain in contact with particles reservoir at different densities. We show, in dimensions d3d \ge 3, that the rescaled empirical density field almost surely, with respect to the random field, converges to the unique weak solution of a non linear parabolic equation having the diffusion matrix determined by the statistical properties of the external random field and boundary conditions determined by the density of the reservoir. Further we show that the rescaled empirical density field, in the stationary regime, almost surely with respect to the random field, converges to the solution of the associated stationary transport equation

    Generalized model for dynamic percolation

    Full text link
    We study the dynamics of a carrier, which performs a biased motion under the influence of an external field E, in an environment which is modeled by dynamic percolation and created by hard-core particles. The particles move randomly on a simple cubic lattice, constrained by hard-core exclusion, and they spontaneously annihilate and re-appear at some prescribed rates. Using decoupling of the third-order correlation functions into the product of the pairwise carrier-particle correlations we determine the density profiles of the "environment" particles, as seen from the stationary moving carrier, and calculate its terminal velocity, V_c, as the function of the applied field and other system parameters. We find that for sufficiently small driving forces the force exerted on the carrier by the "environment" particles shows a viscous-like behavior. An analog Stokes formula for such dynamic percolative environments and the corresponding friction coefficient are derived. We show that the density profile of the environment particles is strongly inhomogeneous: In front of the stationary moving carrier the density is higher than the average density, ρs\rho_s, and approaches the average value as an exponential function of the distance from the carrier. Past the carrier the local density is lower than ρs\rho_s and the relaxation towards ρs\rho_s may proceed differently depending on whether the particles number is or is not explicitly conserved.Comment: Latex, 32 pages, 4 ps-figures, submitted to PR

    Nueva cita de Horvathinia pelocoroides Montandon (Hemiptera: belostomatidae) para la Provincia de Corrientes, Argentina

    Get PDF
    Se cita a Horvathinia pelocoroides para Laguna lberá (Corrientes, Argentina) capturada con red en su ambiente natural, se describen parcialmente las condiciones climáticas y del ambiente

    Probing Polarization and Dielectric Function of Molecules with Higher Order Harmonics in Scattering-near-field Scanning Optical Microscopy

    Get PDF
    The idealized system of an atomically flat metallic surface [highly oriented pyrolytic graphite (HOPG)] and an organic monolayer (porphyrin) was used to determine whether the dielectric function and associated properties of thin films can be accessed with scanning–near-field scanning optical microscopy (s-NSOM). Here, we demonstrate the use of harmonics up to fourth order and the polarization dependence of incident light to probe dielectric properties on idealized samples of monolayers of organic molecules on atomically smooth substrates. An analytical treatment of light/ sample interaction using the s-NSOM tip was developed in order to quantify the dielectric properties. The theoretical analysis and numerical modeling, as well as experimental data, demonstrate that higher order harmonic scattering can be used to extract the dielectric properties of materials with tens of nanometer spatial resolution. To date, the third harmonic provides the best lateral resolution(~50 nm) and dielectric constant contrast for a porphyrin film on HOPG
    corecore