8 research outputs found

    Prevalent mutator genotype identified in fungal pathogen Candida glabrata promotes multi-drug resistance.

    Get PDF
    The fungal pathogen Candida glabrata has emerged as a major health threat since it readily acquires resistance to multiple drug classes, including triazoles and/or echinocandins. Thus far, cellular mechanisms promoting the emergence of resistance to multiple drug classes have not been described in this organism. Here we demonstrate that a mutator phenotype caused by a mismatch repair defect is prevalent in C. glabrata clinical isolates. Strains carrying alterations in mismatch repair gene MSH2 exhibit a higher propensity to breakthrough antifungal treatment in vitro and in mouse models of colonization, and are recovered at a high rate (55% of all C. glabrata recovered) from patients. This genetic mechanism promotes the acquisition of resistance to multiple antifungals, at least partially explaining the elevated rates of triazole and multi-drug resistance associated with C. glabrata. We anticipate that identifying MSH2 defects in infecting strains may influence the management of patients on antifungal drug therapy

    Changes in In Vitro Susceptibility Patterns of Aspergillus to Triazoles and Correlation With Aspergillosis Outcome in a Tertiary Care Cancer Center, 1999-2015

    No full text
    Item does not contain fulltextBackground: Azole-resistant aspergillosis in high-risk patients with hematological malignancy or hematopoietic stem cell transplantation (HSCT) is a cause of concern. Methods: We examined changes over time in triazole minimum inhibitory concentrations (MICs) of 290 sequential Aspergillus isolates recovered from respiratory sources during 1999-2002 (before introduction of the Aspergillus-potent triazoles voriconazole and posaconazole) and 2003-2015 at MD Anderson Cancer Center. We also tested for polymorphisms in ergosterol biosynthetic genes (cyp51A, erg3C, erg1) in the 37 Aspergillus fumigatus isolates isolated from both periods that had non-wild-type (WT) MICs. For the 107 patients with hematologic cancer and/or HSCT with invasive pulmonary aspergillosis, we correlated in vitro susceptibility with 42-day mortality. Results: Non-WT MICs were found in 37 (13%) isolates and was only low level (MIC <8 mg/L) in all isolates. Higher-triazole MICs were more frequent in the second period and were Aspergillus-species specific, and only encountered in A. fumigatus. No polymorphisms in cyp51A, erg3C, erg1 genes were identified. There was no correlation between in vitro MICs with 42-day mortality in patients with invasive pulmonary aspergillosis, irrespective of antifungal treatment. Asian race (odds ratio [OR], 20.9; 95% confidence interval [CI], 2.5-173.5; P = .005) and azole exposure in the prior 3 months (OR, 9.6; 95% CI, 1.9-48.5; P = .006) were associated with azole resistance. Conclusions: Non-WT azole MICs in Aspergillus are increasing and this is associated with prior azole exposure in patients with hematologic cancer or HSCT. However, no correlation of MIC with outcome of aspergillosis was found in our patient cohort

    Engineered fibroblast growth factor 19 protects from acetaminophen-induced liver injury and stimulates aged liver regeneration in mice

    No full text
    The liver displays a remarkable regenerative capacity triggered upon tissue injury or resection. However, liver regeneration can be overwhelmed by excessive parenchymal destruction or diminished by pre-existing conditions hampering repair. Fibroblast growth factor 19 (FGF19, rodent FGF15) is an enterokine that regulates liver bile acid and lipid metabolism, and stimulates hepatocellular protein synthesis and proliferation. FGF19/15 is also important for liver regeneration after partial hepatectomy (PH). Therefore recombinant FGF19 would be an ideal molecule to stimulate liver regeneration, but its applicability may be curtailed by its short half-life. We developed a chimaeric molecule termed Fibapo in which FGF19 is covalently coupled to apolipoprotein A-I. Fibapo retains FGF19 biological activities but has significantly increased half-life and hepatotropism. Here we evaluated the proregenerative activity of Fibapo in two clinically relevant models where liver regeneration may be impaired: acetaminophen (APAP) poisoning, and PH in aged mice. The only approved therapy for APAP intoxication is N-acetylcysteine (NAC) and no drugs are available to stimulate liver regeneration. We demonstrate that Fibapo reduced liver injury and boosted regeneration in APAPintoxicated mice. Fibapo improved survival of APAP-poisoned mice when given at later time points, when NAC is ineffective. Mechanistically, Fibapo accelerated recovery of hepatic glutathione levels, potentiated cell growth-related pathways and increased functional liver mass. When Fibapo was administered to old mice prior to PH, liver regeneration was markedly increased. The exacerbated injury developing in these mice upon PH was attenuated, and the hepatic biosynthetic capacity was enhanced. Fibapo reversed metabolic and molecular alterations that impede regeneration in aged livers. It reduced liver steatosis and downregulated p21 and hepatocyte nuclear factor 4 α (Hnf4α) levels, whereas it stimulated Foxm1b gene expression. Together our findings indicate that FGF19 variants retaining the metabolic and growth-promoting effects of this enterokine may be valuable for the stimulation of liver regeneration.Work in the authors' laboratory is supported by CIBERehd and Grants from Instituto de Salud Carlos III (ISCIII) co-financed by 'Fondo Europeo de Desarrollo Regional' (FEDER) 'Una manera de hacer Europa', numbers: FIS PI13/00359, PI13/00385 and PI16/01126. Grants SAF2015-66515-R, SAF201569944-R, SAF 2016-75972 R from Ministerio de Economía y Competitividad, and the center grant P50AA011999 funded by NIAAA. 'Ramón y Cajal-I3' contract to MUL, Mineco-FPI Fellowship to MB-V. Marie Curie EU contract to MGF-B. Fundación M Torres; Fundación Eugenio Rodríguez Pascual; Fundación Mario Losantos; Fundación Familia Puig-Infante and Fundación Bancaria La CaixaHepacare Project.Peer reviewe

    Dual targeting of histone methyltransferase G9a and DNA-methyltransferase 1 for the treatment of experimental hepatocellular carcinoma

    No full text
    Epigenetic modifications like DNA and histone methylation functionally cooperate fostering tumor growth, including that of hepatocellular carcinoma (HCC). Pharmacological targeting of these mechanisms may open new therapeutic avenues. We aimed to determine the therapeutic efficacy and potential mechanism of action of our new dual G9a histone-methyltransferase and DNA-methytransferase 1 (DNMT1) inhibitor in human HCC cells and their crosstalk with fibrogenic cells. The expression of G9a and DNMT1, along with that of their molecular adaptor ubiquitin-like with PHD and RING finger domains-1 (UHRF1), was measured in human HCCs (n=268), peritumoral tissues (n=154) and HCC cell lines (n=32). We evaluated the effect of individual and combined inhibition of G9a and DNMT1 on HCC cells growth by pharmacological and genetic approaches. The activity of our lead compound, CM-272, was examined in HCC cells under normoxia and hypoxia, human hepatic stellate cells and LX2 cells, and xenograft tumors formed by HCC or combined HCC+LX2 cells. We found a significant and correlative overexpression of G9a, DNMT1 and UHRF1 in HCCs in association with poor prognosis. Independent G9a and DNMT1 pharmacological targeting synergistically inhibited HCC cell growth. CM-272 potently reduced HCC and LX2 cells proliferation and quelled tumor growth, particularly in HCC+LX2 xenografts. Mechanistically, CM-272 inhibited the metabolic adaptation of HCC cells to hypoxia, and induced a differentiated phenotype in HCC and fibrogenic cells. The expression of the metabolic tumor suppressor gene fructose-1,6-bisphosphatase (FBP1), epigenetically repressed in HCC, was restored by CM-272. CONCLUSION: Combined targeting of G9a/DNMT1 with compounds like CM-272 is a promising strategy for HCC treatment. Our findings also underscore the potential of differentiation therapy in HCC. This article is protected by copyright. All rights reserved

    Deletion of the α-(1,3)-glucan synthase genes induces a restructuring of the conidial cell wall responsible for the avirulence of Aspergillus fumigatus.

    Get PDF
    International audienceα-(1,3)-Glucan is a major component of the cell wall of Aspergillus fumigatus, an opportunistic human fungal pathogen. There are three genes (AGS1, AGS2 and AGS3) controlling the biosynthesis of α-(1,3)-glucan in this fungal species. Deletion of all the three AGS genes resulted in a triple mutant that was devoid of α-(1,3)-glucan in its cell wall; however, its growth and germination was identical to that of the parental strain in vitro. In the experimental murine aspergillosis model, this mutant was less pathogenic than the parental strain. The AGS deletion resulted in an extensive structural modification of the conidial cell wall, especially conidial surface where the rodlet layer was covered by an amorphous glycoprotein matrix. This surface modification was responsible for viability reduction of conidia in vivo, which explains decrease in the virulence of triple agsΔ mutant
    corecore