177 research outputs found
Quantifying Proton Fields for Midline Brain Tumors: A Benefit/Cost Analysis of Planning Objectives
Purpose:
We sought to quantify the optimum number of beams by using a midline sagittal arrangement for midline brain tumors when considering the competing demands of a high degree of target conformation and maximizing reduction of nontarget brain dose. The volume of nontarget brain tissue receiving between 5 and 20 Gy (V5-V20) was selected to measure "low-dose bath" to normal brain.
Materials and Methods:
An exploratory model was developed with 6 midline brain targets created by using spheres of 1-, 3-, and 5-cm diameters located in superficial and deep locations. For each, five 3-dimensional proton treatment plans with uniform beam scanning were generated by using 1 to 5 fields. Dose-volume histograms were analyzed to calculate conformation number and V5-V20. A benefit/cost analysis was performed to determine the marginal gain in conformation number and the marginal cost of V5-V20 for the addition of each field and hypothesize the optimum number of treatment fields. We tested our hypothesis by re-planning 10 actual patient tumors with the same technique to compare the averages of these 50 plans to our model.
Results:
Our model and validation cohort demonstrated the largest marginal benefit in target conformation and the lowest marginal cost in normal brain V5-V20 with the addition of a second proton field. The addition of a third field resulted in a relative marginal benefit in target conformation of just 3.9% but a relative marginal cost in V5-V20 of 78.7%. Normal brain absolute V5-V20 increased in a nearly linear fashion with each additional field.
Conclusions:
When treating midline brain lesions with 3-dimensional proton therapy in an array of midline sagittal beams, our model suggests the most appropriate number of fields is 2. There was little marginal benefit in target conformation and increasing cost of normal brain dose when increasing the number of fields beyond this
Lipidomics Analysis Reveals Efficient Storage of Hepatic Triacylglycerides Enriched in Unsaturated Fatty Acids after One Bout of Exercise in Mice
Background: Endurance exercise induces lipolysis, increases circulating concentrations of free fatty acids (FFA) and the uptake and oxidation of fatty acids in the working muscle. Less is known about the regulation of lipid metabolism in the liver during and post-exercise
Deletion of Nlrp3 protects from inflammation-induced skeletal muscle atrophy
BACKGROUND: Critically ill patients develop atrophic muscle failure, which increases morbidity and mortality. Interleukin-1Ξ² (IL-1Ξ²) is activated early in sepsis. Whether IL-1Ξ² acts directly on muscle cells and whether its inhibition prevents atrophy is unknown. We aimed to investigate if IL-1Ξ² activation via the Nlrp3 inflammasome is involved in inflammation-induced atrophy. METHODS: We performed an experimental study and prospective animal trial. The effect of IL-1Ξ² on differentiated C2C12 muscle cells was investigated by analyzing gene-and-protein expression, and atrophy response. Polymicrobial sepsis was induced by cecum ligation and puncture surgery in Nlrp3 knockout and wild type mice. Skeletal muscle morphology, gene and protein expression, and atrophy markers were used to analyze the atrophy response. Immunostaining and reporter-gene assays showed that IL-1Ξ² signaling is contained and active in myocytes. RESULTS: Immunostaining and reporter gene assays showed that IL-1Ξ² signaling is contained and active in myocytes. IL-1Ξ² increased Il6 and atrogene gene expression resulting in myocyte atrophy. Nlrp3 knockout mice showed reduced IL-1Ξ² serum levels in sepsis. As determined by muscle morphology, organ weights, gene expression, and protein content, muscle atrophy was attenuated in septic Nlrp3 knockout mice, compared to septic wild-type mice 96Β h after surgery. CONCLUSIONS:
IL-1Ξ² directly acts on myocytes to cause atrophy in sepsis. Inhibition of IL-1Ξ² activation by targeting Nlrp3 could be useful to prevent inflammation-induced muscle failure in critically ill patients
Plasma acylcarnitine concentrations reflect the acylcarnitine profile in cardiac tissues
Funding Information: This study was supported by the Latvian National Research Program BIOMEDICINE. E. Liepinsh was supported by the FP7 project InnovaBalt [grant Nr. 316149]. We would like to thank Dr. Reinis Vilskersts and Gita Dambrova for help with the isolated skeletal muscle experiments. Publisher Copyright: Β© 2017 The Author(s).Increased plasma concentrations of acylcarnitines (ACs) are suggested as a marker of metabolism disorders. The aim of the present study was to clarify which tissues are responsible for changes in the AC pool in plasma. The concentrations of medium- and long-chain ACs were changing during the fed-fast cycle in rat heart, muscles and liver. After 60 min running exercise, AC content was increased in fasted mice muscles, but not in plasma or heart. After glucose bolus administration in fasted rats, the AC concentrations in plasma decreased after 30 min but then began to increase, while in the muscles and liver, the contents of medium- and long-chain ACs were unchanged or even increased. Only the heart showed a decrease in medium- and long-chain AC contents that was similar to that observed in plasma. In isolated rat heart, but not isolated-contracting mice muscles, the significant efflux of medium- and long-chain ACs was observed. The efflux was reduced by 40% after the addition of glucose and insulin to the perfusion solution. Overall, these results indicate that during fed-fast cycle shifting the heart determines the medium- and long-chain AC profile in plasma, due to a rapid response to the availability of circulating energy substrates.publishersversionPeer reviewe
DJ-1 contributes to adipogenesis and obesity-induced inflammation
Adipose tissue functions as an endocrine organ, and the development of systemic inflammation in adipose tissue is closely associated with metabolic diseases, such as obesity and insulin resistance. Accordingly, the fine regulation of the inflammatory response caused by obesity has therapeutic potential for the treatment of metabolic syndrome. In this study, we analyzed the role of DJ-1 (PARK7) in adipogenesis and inflammation related to obesity in vitro and in vivo. Many intracellular functions of DJ-1, including oxidative stress regulation, are known. However, the possibility of DJ-1 involvement in metabolic disease is largely unknown. Our results suggest that DJ-1 deficiency results in reduced adipogenesis and the down-regulation of pro-inflammatory cytokines in vitro. Furthermore, DJ-1-deficient mice show a low-level inflammatory response in the high-fat diet-induced obesity model. These results indicate previously unknown functions of DJ-1 in metabolism and therefore suggest that precise regulation of DJ-1 in adipose tissue might have a therapeutic advantage for metabolic disease treatment.open0
Spherical Lactic Acid Bacteria Activate Plasmacytoid Dendritic Cells Immunomodulatory Function via TLR9-Dependent Crosstalk with Myeloid Dendritic Cells
Plasmacytoid dendritic cells (pDC) are a specialized sensor of viral and bacterial nucleic acids and a major producer of IFN-Ξ± that promotes host defense by priming both innate and acquired immune responses. Although synthetic Toll-like receptor (TLR) ligands, pathogenic bacteria and viruses activate pDC, there is limited investigation of non-pathogenic microbiota that are in wide industrial dietary use, such as lactic acid bacteria (LAB). In this study, we screened for LAB strains, which induce pDC activation and IFN-Ξ± production using murine bone marrow (BM)-derived Flt-3L induced dendritic cell culture. Microbial strains with such activity on pDC were absent in a diversity of bacillary strains, but were observed in certain spherical species (Lactococcus, Leuconostoc, Streptococcus and Pediococcus), which was correlated with their capacity for uptake by pDC. Detailed study of Lactococcus lactis subsp. lactis JCM5805 and JCM20101 revealed that the major type I and type III interferons were induced (IFN-Ξ±, -Ξ², and Ξ»). IFN-Ξ± induction was TLR9 and MyD88-dependent; a slight impairment was also observed in TLR4-/- cells. While these responses occurred with purified pDC, IFN-Ξ± production was synergistic upon co-culture with myeloid dendritic cells (mDC), an interaction that required direct mDC-pDC contact. L. lactis strains also stimulated expression of immunoregulatory receptors on pDC (ICOS-L and PD-L1), and accordingly augmented pDC induction of CD4+CD25+FoxP3+ Treg compared to the Lactobacillus strain. Oral administration of L. lactis JCM5805 induced significant activation of pDC resident in the intestinal draining mesenteric lymph nodes, but not in a remote lymphoid site (spleen). Taken together, certain non-pathogenic spherical LAB in wide dietary use has potent and diverse immunomodulatory effects on pDC potentially relevant to anti-viral immunity and chronic inflammatory disease
Medium Chain Acylcarnitines Dominate the Metabolite Pattern in Humans under Moderate Intensity Exercise and Support Lipid Oxidation
Background: Exercise is an extreme physiological challenge for skeletal muscle energy metabolism and has notable health benefits. We aimed to identify and characterize metabolites, which are components of the regulatory network mediating the beneficial metabolic adaptation to exercise
Maturation of monocyte-derived dendritic cells with Toll-like receptor 3 and 7/8 ligands combined with prostaglandin E2 results in high interleukin-12 production and cell migration
Dendritic cells (DC) are professional antigen-presenting cells of the immune system that play a key role in regulating T cell-based immunity. In vivo, the capacity of DC to activate T cells depends on their ability to migrate to the T cell areas of lymph nodes as well as on their maturation state. Depending on their cytokine-secreting profile, DC are able to skew the immune response in a specific direction. In particular, IL-12p70 producing DC drive T cells towards a T helper 1 type response. A serious disadvantage of current clinical grade ex vivo generated monocyte-derived DC is the poor IL-12p70 production. We have investigated the effects of Toll-like receptor (TLR)-mediated maturation on ex vivo generated human monocyte-derived DC. We demonstrate that in contrast to cytokine-matured DC, DC matured with poly(I:C) (TLR3 ligand) and/or R848 (TLR7/8 ligand) are able to produce vast amounts of IL-12p70, but exhibit a reduced migratory capacity. The addition of prostaglandin E2 (PGE2) improved the migratory capacity of TLR-ligand matured DC while maintaining their IL-12p70 production upon T cell encounter. We propose a novel clinical grade maturation protocol in which TLR ligands poly(I:C) and R848 are combined with PGE2 to generate DC with both high migratory capacity and IL-12p70 production upon T cell encounter
- β¦