956 research outputs found

    Moregrasp: Restoration of Upper Limb Function in Individuals with High Spinal Cord Injury by Multimodal Neuroprostheses for Interaction in Daily Activities

    Get PDF
    The aim of the MoreGrasp project is to develop a noninvasive, multimodal user interface including a brain-computer interface (BCI) for intuitive control of a grasp neuroprosthesis to support individuals with high spinal cord injury (SCI) in everyday activities. We describe the current state of the project, including the EEG system, preliminary results of natural movements decoding in people with SCI, the new electrode concept for the grasp neuroprosthesis, the shared control architecture behind the system and the implementation of a user-centered design

    Averaging lifetimes for B hadron species

    Get PDF
    The measurement of the lifetimes of the individual B species are of great interest. Many of these measurements are well below the 10 %\% level of precision. However, in order to reach the precision necessary to test the current theoretical predictions, the results from different experiments need to be averaged. Therefore, the relevant systematic uncertainties of each measurement need to be well defined in order to understand the correlations between the results from different experiments. \par In this paper we discuss the dominant sources of systematic errors which lead to correlations between the different measurements. We point out problems connected with the conventional approach of combining lifetime data and discuss methods which overcome these problems

    North to south: ecosystem features determine seagrass community response to sea otter foraging

    Get PDF
    We compared sea otter recovery in California (CA) and British Columbia (BC) to determine how key ecosystem properties shape top-down effects in seagrass communities. Potential ecosystem drivers of sea otter foraging in CA and BC seagrass beds that we examined include the role of coastline complexity and environmental stress on sea otter effects. In BC, we found greater species richness across seagrass trophic assemblages. Furthermore, Cancer spp. crabs, an important link in the seagrass trophic cascade observed in CA, was less common. Additionally, the more recent reintroduction of sea otters, more complex coastline, and reduced environmental stress in BC seagrass habitats supported the hypothesis that sea otter foraging pressure is currently reduced in more northern latitudes. In order to manage the ecosystem features that lead to regional differences in top predator effects in seagrass communities, we review our findings, their spatial and temporal constraints, and present a social-ecological framework for future re- search

    Nanoscale Imaging of High‐Field Magnetic Hysteresis in Meteoritic Metal Using X‐Ray Holography

    Get PDF
    Stable paleomagnetic information in meteoritic metal is carried by the “cloudy zone”: ~1–10 Όm‐wide regions containing islands of ferromagnetic tetrataenite embedded in a paramagnetic antitaenite matrix. Due to their small size and high coercivity (theoretically up to ~2.2 T), the tetrataenite islands carry very stable magnetic remanence. However, these characteristics also make it difficult to image their magnetic state with the necessary spatial resolution and applied magnetic field. Here, we describe the first application of X‐ray holography to image the magnetic structure of the cloudy zone of the Tazewell IIICD meteorite with spatial resolution down to ~40 nm and in applied magnetic fields up to ±1.1 T, sufficient to extract high‐field hysteresis data from individual islands. Images were acquired as a function of magnetic field applied both parallel and perpendicular to the surface of a ~100 nm‐thick slice of the cloudy zone. Broad distributions of coercivity are observed, including values that likely exceed the maximum applied field. Horizontal offsets in the hysteresis loops indicate an interaction field distribution with half width of ~100 mT between the islands in their room temperature single‐domain state, providing a good match to first‐order reversal curve diagrams. The results suggest that future models of remanence acquisition in the cloudy zone should take account of strong interactions in order to extract quantitative estimates of the paleofield.EC/FP7/320750/EU/Nanopaleomagnetism: a multiscale approach to paleomagnetic analysis of geological materials/NanoPaleoMagEC/FP7/312284/EU/Coordinated Access to Lightsources to Promote Standards and Optimization/CALIPS

    A review of the opportunities and challenges for using remote sensing for management of surface-canopy forming kelps

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Cavanaugh, K. C., Bell, T., Costa, M., Eddy, N. E., Gendall, L., Gleason, M. G., Hessing-Lewis, M., Martone, R., McPherson, M., Pontier, O., Reshitnyk, L., Beas-Luna, R., Carr, M., Caselle, J. E., Cavanaugh, K. C., Miller, R. F., Hamilton, S., Heady, W. N., Hirsh, H. K., Hohman R., Lee L. C., Lorda J., Ray J., Reed D. C., Saccomanno V. R., Schroeder, S. B. A review of the opportunities and challenges for using remote sensing for management of surface-canopy forming kelps. Frontiers in Marine Science, 8, (2021): 753531, https://doi.org/10.3389/fmars.2021.753531.Surface-canopy forming kelps provide the foundation for ecosystems that are ecologically, culturally, and economically important. However, these kelp forests are naturally dynamic systems that are also threatened by a range of global and local pressures. As a result, there is a need for tools that enable managers to reliably track changes in their distribution, abundance, and health in a timely manner. Remote sensing data availability has increased dramatically in recent years and this data represents a valuable tool for monitoring surface-canopy forming kelps. However, the choice of remote sensing data and analytic approach must be properly matched to management objectives and tailored to the physical and biological characteristics of the region of interest. This review identifies remote sensing datasets and analyses best suited to address different management needs and environmental settings using case studies from the west coast of North America. We highlight the importance of integrating different datasets and approaches to facilitate comparisons across regions and promote coordination of management strategies.Funding was provided by the Nature Conservancy (Grant No. 02042019-5719), the U.S. National Science Foundation (Grant No. OCE 1831937), and the U.S. Department of Energy ARPA-E (Grant No. DE-AR0000922)

    Field-free deterministic ultra fast creation of skyrmions by spin orbit torques

    Full text link
    Magnetic skyrmions are currently the most promising option to realize current-driven magnetic shift registers. A variety of concepts to create skyrmions were proposed and demonstrated. However, none of the reported experiments show controlled creation of single skyrmions using integrated designs. Here, we demonstrate that skyrmions can be generated deterministically on subnanosecond timescales in magnetic racetracks at artificial or natural defects using spin orbit torque (SOT) pulses. The mechanism is largely similar to SOT-induced switching of uniformly magnetized elements, but due to the effect of the Dzyaloshinskii-Moriya interaction (DMI), external fields are not required. Our observations provide a simple and reliable means for skyrmion writing that can be readily integrated into racetrack devices

    Curation of characterized glycoside hydrolases of Fungal origin

    Get PDF
    Fungi produce a wide range of extracellular enzymes to break down plant cell walls, which are composed mainly of cellulose, lignin and hemicellulose. Among them are the glycoside hydrolases (GH), the largest and most diverse family of enzymes active on these substrates. To facilitate research and development of enzymes for the conversion of cell-wall polysaccharides into fermentable sugars, we have manually curated a comprehensive set of characterized fungal glycoside hydrolases. Characterized glycoside hydrolases were retrieved from protein and enzyme databases, as well as literature repositories. A total of 453 characterized glycoside hydrolases have been cataloged. They come from 131 different fungal species, most of which belong to the phylum Ascomycota. These enzymes represent 46 different GH activities and cover 44 of the 115 CAZy GH families. In addition to enzyme source and enzyme family, available biochemical properties such as temperature and pH optima, specific activity, kinetic parameters and substrate specificities were recorded. To simplify comparative studies, enzyme and species abbreviations have been standardized, Gene Ontology terms assigned and reference to supporting evidence provided. The annotated genes have been organized in a searchable, online database called mycoCLAP (Characterized Lignocellulose-Active Proteins of fungal origin). It is anticipated that this manually curated collection of biochemically characterized fungal proteins will be used to enhance functional annotation of novel GH genes

    Breaking Traditions:An Isotopic Study on the Changing Funerary Practices in the Dutch Iron Age (800-12 bc)

    Get PDF
    Urnfields in the Dutch river area were replaced by cemeteries with a mixture of cremation and inhumation graves around the sixth century bc. This study provides the first biogeochemical evidence that the Iron Age communities were heterogeneous in terms of geological origins. The high percentage of non-locally born individuals (~48%) supports the hypothesis that the change in burial practice was the result of the influx of foreign people, who were being allowed to keep their own burial customs, whereas some of the local inhabitants adapted the burial rites of foreign cultures, leading to a heterogeneous burial rite for some centuries

    Low-Altitude UAV Imaging Accurately Quantifies Eelgrass Wasting Disease From Alaska to California

    Get PDF
    Declines in eelgrass, an important and widespread coastal habitat, are associated with wasting disease in recent outbreaks on the Pacific coast of North America. This study presents a novel method for mapping and predicting wasting disease using Unoccupied Aerial Vehicle (UAV) with low-altitude autonomous imaging of visible bands. We conducted UAV mapping and sampling in intertidal eelgrass beds across multiple sites in Alaska, British Columbia, and California. We designed and implemented a UAV low-altitude mapping protocol to detect disease prevalence and validated against in situ results. Our analysis revealed that green leaf area index derived from UAV imagery was a strong and significant (inverse) predictor of spatial distribution and severity of wasting disease measured on the ground, especially for regions with extensive disease infection. This study highlights a novel, efficient, and portable method to investigate seagrass disease at landscape scales across geographic regions and conditions
    • 

    corecore