28 research outputs found

    Hyperfine Spectroscopy of Optically Trapped Atoms

    Full text link
    We perform spectroscopy on the hyperfine splitting of 85^{85}Rb atoms trapped in far-off-resonance optical traps. The existence of a spatially dependent shift in the energy levels is shown to induce an inherent dephasing effect, which causes a broadening of the spectroscopic line and hence an inhomogeneous loss of atomic coherence at a much faster rate than the homogeneous one caused by spontaneous photon scattering. We present here a number of approaches for reducing this inhomogeneous broadening, based on trap geometry, additional laser fields, and novel microwave pulse sequences. We then show how hyperfine spectroscopy can be used to study quantum dynamics of optically trapped atoms.Comment: Review/Tutoria

    Seasonal variation of carbon fluxes in a sparse savanna in semi arid Sudan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Large spatial, seasonal and annual variability of major drivers of the carbon cycle (precipitation, temperature, fire regime and nutrient availability) are common in the Sahel region. This causes large variability in net ecosystem exchange and in vegetation productivity, the subsistence basis for a major part of the rural population in Sahel. This study compares the 2005 dry and wet season fluxes of CO<sub>2 </sub>for a grass land/sparse savanna site in semi arid Sudan and relates these fluxes to water availability and incoming photosynthetic photon flux density (PPFD). Data from this site could complement the current sparse observation network in Africa, a continent where climatic change could significantly impact the future and which constitute a weak link in our understanding of the global carbon cycle.</p> <p>Results</p> <p>The dry season (represented by Julian day 35–46, February 2005) was characterized by low soil moisture availability, low evapotranspiration and a high vapor pressure deficit. The mean daily NEE (net ecosystem exchange, Eq. 1) was -14.7 mmol d<sup>-1 </sup>for the 12 day period (negative numbers denote sinks, i.e. flux from the atmosphere to the biosphere). The water use efficiency (WUE) was 1.6 mmol CO<sub>2 </sub>mol H<sub>2</sub>O<sup>-1 </sup>and the light use efficiency (LUE) was 0.95 mmol CO<sub>2 </sub>mol PPFD<sup>-1</sup>. Photosynthesis is a weak, but linear function of PPFD. The wet season (represented by Julian day 266–273, September 2005) was, compared to the dry season, characterized by slightly higher soil moisture availability, higher evapotranspiration and a slightly lower vapor pressure deficit. The mean daily NEE was -152 mmol d<sup>-1 </sup>for the 8 day period. The WUE was lower, 0.97 mmol CO<sub>2 </sub>mol H<sub>2</sub>O<sup>-1 </sup>and the LUE was higher, 7.2 <it>μ</it>mol CO<sub>2 </sub>mmol PPFD<sup>-1 </sup>during the wet season compared to the dry season. During the wet season photosynthesis increases with PPFD to about 1600 <it>μ</it>mol m<sup>-2</sup>s<sup>-1 </sup>and then levels off.</p> <p>Conclusion</p> <p>Based on data collected during two short periods, the studied ecosystem was a sink of carbon both during the dry and wet season 2005. The small sink during the dry season is surprising and similar dry season sinks have not to our knowledge been reported from other similar savanna ecosystems and could have potential management implications for agroforestry. A strong response of NEE versus small changes in plant available soil water content was found. Collection and analysis of flux data for several consecutive years including variations in precipitation, available soil moisture and labile soil carbon are needed for understanding the year to year variation of the carbon budget of this grass land/sparse savanna site in semi arid Sudan.</p

    The handbook for standardized field and laboratory measurements in terrestrial climate change experiments and observational studies (ClimEx)

    Get PDF
    1. Climate change is a world‐wide threat to biodiversity and ecosystem structure, functioning and services. To understand the underlying drivers and mechanisms, and to predict the consequences for nature and people, we urgently need better understanding of the direction and magnitude of climate change impacts across the soil–plant–atmosphere continuum. An increasing number of climate change studies are creating new opportunities for meaningful and high‐quality generalizations and improved process understanding. However, significant challenges exist related to data availability and/or compatibility across studies, compromising opportunities for data re‐use, synthesis and upscaling. Many of these challenges relate to a lack of an established ‘best practice’ for measuring key impacts and responses. This restrains our current understanding of complex processes and mechanisms in terrestrial ecosystems related to climate change. 2. To overcome these challenges, we collected best‐practice methods emerging from major ecological research networks and experiments, as synthesized by 115 experts from across a wide range of scientific disciplines. Our handbook contains guidance on the selection of response variables for different purposes, protocols for standardized measurements of 66 such response variables and advice on data management. Specifically, we recommend a minimum subset of variables that should be collected in all climate change studies to allow data re‐use and synthesis, and give guidance on additional variables critical for different types of synthesis and upscaling. The goal of this community effort is to facilitate awareness of the importance and broader application of standardized methods to promote data re‐use, availability, compatibility and transparency. We envision improved research practices that will increase returns on investments in individual research projects, facilitate second‐order research outputs and create opportunities for collaboration across scientific communities. Ultimately, this should significantly improve the quality and impact of the science, which is required to fulfil society's needs in a changing world

    Grating interferometer based scanning setup for hard x-ray phase contrast imaging

    No full text
    In x-ray radiography, particularly for technical and industrial applications, a scanning setup is very often favorable when compared to a direct two-dimensional image acquisition. Here, we report on an efficient scanning method for grating based x-ray phase contrast imaging with tube based sources. It uses multiple line detectors for staggered acquisition of the individual phase-stepping images. We find that the total exposure time does not exceed the time needed in an equivalent scanning setup for absorption radiography. Therefore, we conclude that it should be possible to implement the method into a scanning system without affecting the scanning speed or significant increase in cost but with the advantage of providing both the phase contrast and the absorption information at once

    Fabrication of diffraction gratings for hard X-ray phase contrast imaging

    No full text
    We have developed a method for X-ray phase contrast imaging, which is based on a grating interferometer. The technique is capable of recording the phase shift of hard X-rays travelling through a sample, which greatly enhances the contrast of low absorbing specimen compared to conventional amplitude contrast images. Unlike other existing X-ray phase contrast imaging methods, the grating interferometer also works with incoherent radiation from a standard X-ray tube. The key components are three gratings with silicon and gold structures, which have dimensions in the micrometer range and high aspect ratios. The fabrication processes, which involve photolithography, anisotropic wet etching, and electroplating, are described in this article for each of the three gratings. An example of an X-ray phase contrast image acquired with the grating interferometer is given

    Species-level effects more important than functional group-level responses to elevated CO2: evidence from simulated turves

    No full text
    Using mixtures of 14 calcareous grassland plant species drawn from three functional groups, we looked at the effects of elevated atmospheric CO2 on contrasting levels of ecosystem performance (species, functional group and community). Experimental communities were subjected to ambient (?350 µmol mol?1) or elevated CO2 (?600 µmol mol?1) in controlled environments, with grazing simulated by clipping at monthly intervals for 546 days.We assessed the effect of elevated CO2 on plant performance by quantifying the productivity (biomass) and cover of component species. We also examined the effect of elevated CO2 on the vertical structure of the plant canopy. Elevated CO2 resulted in a significant increase in total community biomass only following nutrient addition. Within functional groups, non-leguminous forb species had significantly greater biomass and cover in elevated CO2 both before and after nutrient addition, although the effect was mainly due to the influence of one species (Centaurea nigra). Grasses, in contrast, responded negatively to elevated CO2, although again significant reductions in biomass and cover could mainly be ascribed to a single species (Brachypodium pinnatum). Legumes exhibited increased biomass and cover in elevated CO2 (the effects being particularly marked for Anthyllis vulneraria and Lotus corniculatus), but this response disappeared following nutrient addition. Vertical structure was little affected by CO2 treatment.We conclude that due to the idiosyncratic responses of individual species, the categorization of plants into broad functional groups is of limited use in guiding our understanding of the impacts of elevated atmospheric CO2 on plant communities.<br/
    corecore