30 research outputs found

    Constructal design method dealing with stiffened plates and symmetry boundaries

    Get PDF
    A new computational procedure for modelling the structural behavior of stiffened plates with symmetry boundary conditions is here presented. It uses two-dimensional finite elements as a way to decrease computational time without losing precision thanks to a relatively small number of elements applied for analyzing out-of-plane displacements (deflections) and stresses. Adding, the constructal design method was included in the procedure, together with the exhaustive search technique, with the scope to optimize the stress/strain status of stiffened plates by design changes. For the purpose, a reference plate without stiffeners was initially design and used as starting point. Part of the volume was reshaped into stiffeners: thickness was reduced maintaining unchanged weight, length and width. The main goal was to minimize strains and stresses by geometric changes. Results demonstrated that, thanks to this design procedure, it is always possible to find an adequate geometry transformation from reference plate into stiffeners, allowing significant improvements in mechanical behavior

    α,β-D-Constrained Nucleic Acids Are Strong Terminators of Thermostable DNA Polymerases in Polymerase Chain Reaction

    Get PDF
    (SC5′, RP) α,β-D- Constrained Nucleic Acids (CNA) are dinucleotide building blocks that can feature either B-type torsional angle values or non-canonical values, depending on their 5′C and P absolute stereochemistry. These CNA are modified neither on the nucleobase nor on the sugar structure and therefore represent a new class of nucleotide with specific chemical and structural characteristics. They promote marked bending in a single stranded DNA so as to preorganize it into a loop-like structure, and they have been shown to induce rigidity within oligonucleotides. Following their synthesis, studies performed on CNA have only focused on the constraints that this family of nucleotides introduced into DNA. On the assumption that bending in a DNA template may produce a terminator structure, we investigated whether CNA could be used as a new strong terminator of polymerization in PCR. We therefore assessed the efficiency of CNA as a terminator in PCR, using triethylene glycol phosphate units as a control. Analyses were performed by denaturing gel electrophoresis and several PCR products were further analysed by sequencing. The results showed that the incorporation of only one CNA was always skipped by the polymerases tested. On the other hand, two CNA units always stopped proofreading polymerases, such as Pfu DNA polymerase, as expected for a strong replication terminator. Non-proofreading enzymes, e.g. Taq DNA polymerase, did not recognize this modification as a strong terminator although it was predominantly stopped by this structure. In conclusion, this first functional use of CNA units shows that these modified nucleotides can be used as novel polymerization terminators of proofreading polymerases. Furthermore, our results lead us to propose that CNA and their derivatives could be useful tools for investigating the behaviour of different classes of polymerases

    Mechanically stable and photocatalytically active TiO2/SiO2 hybrid films on flexible organic substrates

    No full text
    SSCI-VIDE+CARE+DAG:IBE:CGUInternational audiencePhotocatalytic porous coatings (micro-, meso- and macroporous) are obtained by the dispersion of TiO2 nanoparticles in sol–gel hybrid matrices. The sol–gel silica matrix is used as a binder stabilizing the nanoparticle dispersion and as a protective layer for the organic substrates. Organic groups are introduced into the matrix to induce the film flexibility and a part of them is used to create the final microstructure allowing remarkable improvement of the photocatalytic properties. The film structure and UV stability are fully characterized. The photocatalytic activity is evaluated through a test with formic acid. Flexible efficient photoactive composites are obtained showing important capabilities for depollution (water and air) and self-cleaning applications

    Cryptic oxygen cycling in anoxic marine zones.

    No full text
    International audienceOxygen availability drives changes in microbial diversity and biogeochemical cycling between the aerobic surface layer and the anaerobic core in nitrite-rich anoxic marine zones (AMZs), which constitute huge oxygen-depleted regions in the tropical oceans. The current paradigm is that primary production and nitrification within the oxic surface layer fuel anaerobic processes in the anoxic core of AMZs, where 30-50% of global marine nitrogen loss takes place. Here we demonstrate that oxygenic photosynthesis in the secondary chlorophyll maximum (SCM) releases significant amounts of O2 to the otherwise anoxic environment. The SCM, commonly found within AMZs, was dominated by the picocyanobacteria Prochlorococcus spp. Free O2 levels in this layer were, however, undetectable by conventional techniques, reflecting a tight coupling between O2 production and consumption by aerobic processes under apparent anoxic conditions. Transcriptomic analysis of the microbial community in the seemingly anoxic SCM revealed the enhanced expression of genes for aerobic processes, such as nitrite oxidation. The rates of gross O2 production and carbon fixation in the SCM were found to be similar to those reported for nitrite oxidation, as well as for anaerobic dissimilatory nitrate reduction and sulfate reduction, suggesting a significant effect of local oxygenic photosynthesis on Pacific AMZ biogeochemical cycling

    Flow Cytometry Data Preparation Guidelines for Improved Automated Phenotypic Analysis

    No full text
    Advances in flow cytometry (FCM) increasingly demand adoption of computational analysis tools to tackle the ever-growing data dimensionality. In this study, we tested different data input modes to evaluate how cytometry acquisition configuration and data compensation procedures affect the performance of unsupervised phenotyping tools. An analysis workflow was set up and tested for the detection of changes in reference bead subsets and in a rare subpopulation of murine lymph node CD103+ dendritic cells acquired by conventional or spectral cytometry. Raw spectral data or pseudospectral data acquired with the full set of available detectors by conventional cytometry consistently outperformed datasets acquired and compensated according to FCM standards. Our results thus challenge the paradigm of one-fluorochrome/one-parameter acquisition in FCM for unsupervised cluster-based analysis. Instead, we propose to configure instrument acquisition to use all available fluorescence detectors and to avoid integration and compensation procedures, thereby using raw spectral or pseudospectral data for improved automated phenotypic analysis.We thank Irene Palacios, Elena Prieto, Mariano Vito´n, and Raquel Nieto for excellent technical assistance and Dr. Salvador Iborra for helpful discussion of dendritic cell studies. Editorial assistance was provided by Simon Bartlett.S

    Grazing rates and functional diversity of uncultured heterotrophic flagellates

    Get PDF
    9 pages, 4 figuresAquatic assemblages of heterotrophic protists are very diverse and formed primarily by organisms that remain uncultured. Thus, a critical issue is assigning a functional role to this unknown biota. Here we measured grazing rates of uncultured protists in natural assemblages (detected by fluorescent in situ hybridization (FISH)), and investigated their prey preference over several bacterial tracers in short-term ingestion experiments. These included fluorescently labeled bacteria (FLB) and two strains of the Roseobacter lineage and the family Flavobacteriaceae, of various cell sizes, which were offered alive and detected by catalyzed reporter deposition-FISH after the ingestion. We obtained grazing rates of the globally distributed and uncultured marine stramenopiles groups 4 and 1 (MAST-4 and MAST-1C) flagellates. Using FLB, the grazing rate of MAST-4 was somewhat lower than whole community rates, consistent with its small size. MAST-4 preferred live bacteria, and clearance rates with these tracers were up to 2 nl per predator per h. On the other hand, grazing rates of MAST-1C differed strongly depending on the tracer prey used, and these differences could not be explained by cell viability. Highest rates were obtained using FLB whereas the flavobacteria strain was hardly ingested. Possible explanations would be that the small flavobacteria cells were outside the effective size range of edible prey, or that MAST-1C selects against this particular strain. Our original dual FISH protocol applied to grazing experiments reveals important functional differences between distinct uncultured protists and offers the possibility to disentangle the complexity of microbial food websThis study was supported by the project ESTRAMAR (CTM2004-12631/MAR, MEC) to RM. FN was supported by the Marie-Curie fellowship ESUMAST (MEIF CT-2005-025000) and TL by the project METAOCEANS (MEST-CT-2005-019678)Peer reviewe
    corecore