593 research outputs found

    Deep-water turbidites as Holocene earthquake proxies: the Cascadia subduction zone and Northern San Andreas Fault systems

    Get PDF
    New stratigraphic evidence from the Cascadia margin demonstrates that 13 earthquakes ruptured the margin from Vancouver Island to at least the California border following the catastrophic eruption of Mount Mazama. These 13 events have occurred with an average repeat time of ?? 600 years since the first post-Mazama event ?? 7500 years ago. The youngest event ?? 300 years ago probably coincides with widespread evidence of coastal subsidence and tsunami inundation in buried marshes along the Cascadia coast. We can extend the Holocene record to at least 9850 years, during which 18 events correlate along the same region. The pattern of repeat times is consistent with the pattern observed at most (but not all) localities onshore, strengthening the contention that both were produced by plate-wide earthquakes. We also observe that the sequence of Holocene events in Cascadia may contain a repeating pattern, a tantalizing look at what may be the long-term behavior of a major fault system. Over the last ?? 7500 years, the pattern appears to have repeated at least three times, with the most recent A.D. 1700 event being the third of three events following a long interval of 845 years between events T4 and T5. This long interval is one that is also recognized in many of the coastal records, and may serve as an anchor point between the offshore and onshore records. Similar stratigraphic records are found in two piston cores and one box core from Noyo Channel, adjacent to the Northern San Andreas Fault, which show a cyclic record of turbidite beds, with thirty- one turbidite beds above a Holocene/.Pleistocene faunal «datum». Thus far, we have determined ages for 20 events including the uppermost 5 events from these cores. The uppermost event returns a «modern» age, which we interpret is likely the 1906 San Andreas earthquake. The penultimate event returns an intercept age of A.D. 1664 (2 ?? range 1505- 1822). The third event and fourth event are lumped together, as there is no hemipelagic sediment between them. The age of this event is A.D. 1524 (1445-1664), though we are not certain whether this event represents one event or two. The fifth event age is A.D. 1204 (1057-1319), and the sixth event age is A.D. 1049 (981-1188). These results are in relatively good agreement with the onshore work to date, which indicates an age for the penultimate event in the mid-1600 s, the most likely age for the third event of ?? 1500-1600, and a fourth event ?? 1300. We presently do not have the spatial sampling needed to test for synchroneity of events along the Northern San Andreas, and thus cannot determine with confidence that the observed turbidite record is earthquake generated. However, the good agreement in number of events between the onshore and offshore records suggests that, as in Cascadia, turbidite triggers other than earthquakes appear not to have added significantly to the turbidite record along the northernmost San Andreas margin during the last ?? 2000 years

    Tracking ocean wave spectrum from SAR images

    Get PDF
    An end to end algorithm for recovery of ocean wave spectral peaks from Synthetic Aperture Radar (SAR) images is described. Current approaches allow precisions of 1 percent in wave number, and 0.6 deg in direction

    Deep-water turbidites as Holocene earthquake proxies: the Cascadia subduction zone and Northern San Andreas Fault systems

    Get PDF
    New stratigraphic evidence from the Cascadia margin demonstrates that 13 earthquakes ruptured the margin from Vancouver Island to at least the California border following the catastrophic eruption of Mount Mazama. These 13 events have occurred with an average repeat time of ?? 600 years since the first post-Mazama event ?? 7500 years ago. The youngest event ?? 300 years ago probably coincides with widespread evidence of coastal subsidence and tsunami inundation in buried marshes along the Cascadia coast. We can extend the Holocene record to at least 9850 years, during which 18 events correlate along the same region. The pattern of repeat times is consistent with the pattern observed at most (but not all) localities onshore, strengthening the contention that both were produced by plate-wide earthquakes. We also observe that the sequence of Holocene events in Cascadia may contain a repeating pattern, a tantalizing look at what may be the long-term behavior of a major fault system. Over the last ?? 7500 years, the pattern appears to have repeated at least three times, with the most recent A.D. 1700 event being the third of three events following a long interval of 845 years between events T4 and T5. This long interval is one that is also recognized in many of the coastal records, and may serve as an anchor point between the offshore and onshore records. Similar stratigraphic records are found in two piston cores and one box core from Noyo Channel, adjacent to the Northern San Andreas Fault, which show a cyclic record of turbidite beds, with thirty- one turbidite beds above a Holocene/.Pleistocene faunal «datum». Thus far, we have determined ages for 20 events including the uppermost 5 events from these cores. The uppermost event returns a «modern» age, which we interpret is likely the 1906 San Andreas earthquake. The penultimate event returns an intercept age of A.D. 1664 (2 ?? range 1505- 1822). The third event and fourth event are lumped together, as there is no hemipelagic sediment between them. The age of this event is A.D. 1524 (1445-1664), though we are not certain whether this event represents one event or two. The fifth event age is A.D. 1204 (1057-1319), and the sixth event age is A.D. 1049 (981-1188). These results are in relatively good agreement with the onshore work to date, which indicates an age for the penultimate event in the mid-1600 s, the most likely age for the third event of ?? 1500-1600, and a fourth event ?? 1300. We presently do not have the spatial sampling needed to test for synchroneity of events along the Northern San Andreas, and thus cannot determine with confidence that the observed turbidite record is earthquake generated. However, the good agreement in number of events between the onshore and offshore records suggests that, as in Cascadia, turbidite triggers other than earthquakes appear not to have added significantly to the turbidite record along the northernmost San Andreas margin during the last ?? 2000 years

    Deep-water turbidites as Holocene earthquake proxies: the Cascadia subduction zone and Northern San Andreas Fault systems

    Get PDF
    New stratigraphic evidence from the Cascadia margin demonstrates that 13 earthquakes ruptured the margin from Vancouver Island to at least the California border following the catastrophic eruption of Mount Mazama. These 13 events have occurred with an average repeat time of ~ 600 years since the first post-Mazama event ~ 7500 years ago. The youngest event ~ 300 years ago probably coincides with widespread evidence of coastal subsidence and tsunami inundation in buried marshes along the Cascadia coast. We can extend the Holocene record to at least 9850 years, during which 18 events correlate along the same region. The pattern of repeat times is consistent with the pattern observed at most (but not all) localities onshore, strengthening the contention that both were produced by plate-wide earthquakes. We also observe that the sequence of Holocene events in Cascadia may contain a repeating pattern, a tantalizing look at what may be the long-term behavior of a major fault system. Over the last ~ 7500 years, the pattern appears to have repeated at least three times, with the most recent A.D. 1700 event being the third of three events following a long interval of 845 years between events T4 and T5. This long interval is one that is also recognized in many of the coastal records, and may serve as an anchor point between the offshore and onshore records. Similar stratigraphic records are found in two piston cores and one box core from Noyo Channel, adjacent to the Northern San Andreas Fault, which show a cyclic record of turbidite beds, with thirty-one turbidite beds above a Holocene/.Pleistocene faunal «datum». Thus far, we have determined ages for 20 events including the uppermost 5 events from these cores. The uppermost event returns a «modern» age, which we interpret is likely the 1906 San Andreas earthquake. The penultimate event returns an intercept age of A.D. 1664 (2 s range 1505-1822). The third event and fourth event are lumped together, as there is no hemipelagic sediment between them. The age of this event is A.D. 1524 (1445-1664), though we are not certain whether this event represents one event or two. The fifth event age is A.D. 1204 (1057-1319), and the sixth event age is A.D. 1049 (981-1188). These results are in relatively good agreement with the onshore work to date, which indicates an age for the penultimate event in the mid-1600’s, the most likely age for the third event of ~ 1500-1600, and a fourth event ~ 1300. We presently do not have the spatial sampling needed to test for synchroneity of events along the Northern San Andreas, and thus cannot determine with confidence that the observed turbidite record is earthquake generated. However, the good agreement in number of events between the onshore and offshore records suggests that, as in Cascadia, turbidite triggers other than earthquakes appear not to have added significantly to the turbidite record along the northernmost San Andreas margin during the last ~ 2000 years

    Simulated tsunami inundation for a range of Cascadia megathrust earthquake scenarios at Bandon, Oregon, USA

    Get PDF
    Characterizations of tsunami hazards along the Cascadia subduction zone hinge on uncertainties in megathrust rupture models used for simulating tsunami inundation. To explore these uncertainties, we constructed 15 megathrust earthquake scenarios using rupture models that supply the initial conditions for tsunami simulations at Bandon, Oregon. Tsunami inundation varies with the amount and distribution of fault slip assigned to rupture models, including models where slip is partitioned to a splay fault in the accretionary wedge and models that vary the updip limit of slip on a buried fault. Constraints on fault slip come from onshore and offshore paleoseismological evidence. We rank each rupture model using a logic tree that evaluates a model\u27s consistency with geological and geophysical data. The scenarios provide inputs to a hydrodynamic model, SELFE, used to simulate tsunami generation, propagation, and inundation on unstructured grids with \u3c 5-15 m resolution in coastal areas. Tsunami simulations delineate the likelihood that Cascadia tsunamis will exceed mapped inundation lines. Maximum wave elevations at the shoreline varied from similar to 4 m to 25 m for earthquakes with 9-44 m slip and M-w 8.7-9.2. Simulated tsunami inundation agrees with sparse deposits left by the A. D. 1700 and older tsunamis. Tsunami simulations for large (22-30 m slip) and medium (14-19 m slip) splay fault scenarios encompass 80%-95% of all inundation scenarios and provide reasonable guidelines for landuse planning and coastal development. The maximum tsunami inundation simulated for the greatest splay fault scenario (3644 m slip) can help to guide development of local tsunami evacuation zones

    New constraints on coseismic slip during southern Cascadia subduction zone earthquakes over the past 4600 years implied by tsunami deposits and marine turbidites

    Get PDF
    This correction stands to correct Figure 7c listing a low minimum slip of 12 m for Case 2 instead of the correct value of 8 m, as stated in the body of the text and depicted on the chart of cumulative slip. The corrected chart explanation and caption are shown below. This error did not affect any of the findings of the paper or the chart itself. This is a correction to the original article

    Searching for keV Sterile Neutrino Dark Matter with X-ray Microcalorimeter Sounding Rockets

    Full text link
    High-resolution X-ray spectrometers onboard suborbital sounding rockets can search for dark matter candidates that produce X-ray lines, such as decaying keV-scale sterile neutrinos. Even with exposure times and effective areas far smaller than XMM-Newton and Chandra observations, high-resolution, wide field-of-view observations with sounding rockets have competitive sensitivity to decaying sterile neutrinos. We analyze a subset of the 2011 observation by the X-ray Quantum Calorimeter instrument centered on Galactic coordinates l = 165, b = -5 with an effective exposure of 106 seconds, obtaining a limit on the sterile neutrino mixing angle of sin^2(2 theta) < 7.2e-10 at 95% CL for a 7 keV neutrino. Better sensitivity at the level of sin^2(2 theta) ~ 2.1e-11 at 95\% CL for a 7 keV neutrino is achievable with future 300-second observations of the galactic center by the Micro-X instrument, providing a definitive test of the sterile neutrino interpretation of the reported 3.56 keV excess from galaxy clusters.Comment: 13 pages, 13 figures, submitted to Ap

    The fundamental parameters of the roAp star 10 Aql

    Full text link
    Due to the strong magnetic field and related abnormal surface layers existing in rapidly oscillating Ap stars, systematic errors are likely to be present when determining their effective temperatures, which potentially compromises asteroseismic studies of these pulsators. Using long-baseline interferometry, our goal is to determine accurate angular diameters of a number of roAp targets to provide a temperature calibration for these stars. We obtained interferometric observations of 10 Aql with the visible spectrograph VEGA at the CHARA array. We determined a limb-darkened angular diameter of 0.275+/-0.009 mas and deduced a linear radius of 2.32+/-0.09 R_sun. We estimated the star's bolometric flux and used it, in combination with its parallax and angular diameter, to determine the star's luminosity and effective temperature. For two data sets of bolometric flux we derived an effective temperature of 7800+/-170 K and a luminosity of 18+/-1 L_sun or of 8000+/-210 K and 19+/-2 L_sun. We used these fundamental parameters together with the large frequency separation to constrain the mass and the age of 10 Aql, using the CESAM stellar evolution code. Assuming a solar chemical composition and ignoring all kinds of diffusion and settling of elements, we obtained a mass of 1.92 M_sun and an age of 780 Gy or a mass of 1.95 M_sun and an age of 740 Gy, depending on the considered bolometric flux. For the first time, we managed to determine an accurate angular diameter for a star smaller than 0.3 mas and to derive its fundamental parameters. In particular, by only combining our interferometric data and the bolometric flux, we derived an effective temperature that can be compared to those derived from atmosphere models. Such fundamental parameters can help for testing the mechanism responsible for the excitation of the oscillations observed in the magnetic pulsating stars

    Great earthquakes along the Western United States continental margin: implications for hazards, stratigraphy and turbidite lithology

    Get PDF
    We summarize the importance of great earthquakes (&lt;i&gt;M&lt;/i&gt;&lt;sub&gt;w&lt;/sub&gt; &amp;gtrsim; 8) for hazards, stratigraphy of basin floors, and turbidite lithology along the active tectonic continental margins of the Cascadia subduction zone and the northern San Andreas Transform Fault by utilizing studies of swath bathymetry visual core descriptions, grain size analysis, X-ray radiographs and physical properties. Recurrence times of Holocene turbidites as proxies for earthquakes on the Cascadia and northern California margins are analyzed using two methods: (1) radiometric dating (&lt;sup&gt;14&lt;/sup&gt;C method), and (2) relative dating, using hemipelagic sediment thickness and sedimentation rates (H method). The H method provides (1) the best estimate of minimum recurrence times, which are the most important for seismic hazards risk analysis, and (2) the most complete dataset of recurrence times, which shows a normal distribution pattern for paleoseismic turbidite frequencies. We observe that, on these tectonically active continental margins, during the sea-level highstand of Holocene time, triggering of turbidity currents is controlled dominantly by earthquakes, and paleoseismic turbidites have an average recurrence time of ~550 yr in northern Cascadia Basin and ~200 yr along northern California margin. The minimum recurrence times for great earthquakes are approximately 300 yr for the Cascadia subduction zone and 130 yr for the northern San Andreas Fault, which indicates both fault systems are in (Cascadia) or very close (San Andreas) to the early window for another great earthquake. &lt;br&gt;&lt;br&gt; On active tectonic margins with great earthquakes, the volumes of mass transport deposits (MTDs) are limited on basin floors along the margins. The maximum run-out distances of MTD sheets across abyssal-basin floors along active margins are an order of magnitude less (~100 km) than on passive margins (~1000 km). The great earthquakes along the Cascadia and northern California margins cause seismic strengthening of the sediment, which results in a margin stratigraphy of minor MTDs compared to the turbidite-system deposits. In contrast, the MTDs and turbidites are equally intermixed on basin floors along passive margins with a mud-rich continental slope, such as the northern Gulf of Mexico. &lt;br&gt;&lt;br&gt; Great earthquakes also result in characteristic seismo-turbidite lithology. Along the Cascadia margin, the number and character of multiple coarse pulses for correlative individual turbidites generally remain constant both upstream and downstream in different channel systems for 600 km along the margin. This suggests that the earthquake shaking or aftershock signature is normally preserved, for the stronger (&lt;i&gt;M&lt;/i&gt;&lt;sub&gt;w&lt;/sub&gt; &amp;ge; 9) Cascadia earthquakes. In contrast, the generally weaker (&lt;i&gt;M&lt;/i&gt;&lt;sub&gt;w&lt;/sub&gt; = or &lt;8) California earthquakes result in upstream simple fining-up turbidites in single tributary canyons and channels; however, downstream mainly stacked turbidites result from synchronously triggered multiple turbidity currents that deposit in channels below confluences of the tributaries. Consequently, both downstream channel confluences and the strongest (&lt;i&gt;M&lt;/i&gt;&lt;sub&gt;w&lt;/sub&gt; &amp;ge; 9) great earthquakes contribute to multi-pulsed and stacked turbidites that are typical for seismo-turbidites generated by a single great earthquake. Earthquake triggering and multi-pulsed or stacked turbidites also become an alternative explanation for amalgamated turbidite beds in active tectonic margins, in addition to other classic explanations. The sedimentologic characteristics of turbidites triggered by great earthquakes along the Cascadia and northern California margins provide criteria to help distinguish seismo-turbidites in other active tectonic margins
    • …
    corecore