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1.  Introduction

The study of plate boundary fault systems
has been revolutionized by two relatively recent
sub-disciplines: paleoseismology and crustal
motion as measured by the Global Positioning
System. GPS technology now makes it possible
to measure crustal strain accumulation at plate
boundaries with a high degree of certainty in
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Abstract
New stratigraphic evidence from the Cascadia margin demonstrates that 13 earthquakes ruptured the margin from
Vancouver Island to at least the California border following the catastrophic eruption of Mount Mazama. These 13 events
have occurred with an average repeat time of 600 years since the first post-Mazama event 7500 years ago. The youngest
event 300 years ago probably coincides with widespread evidence of coastal subsidence and tsunami inundation in buried
marshes along the Cascadia coast. We can extend the Holocene record to at least 9850 years, during which 18 events cor-
relate along the same region. The pattern of repeat times is consistent with the pattern observed at most (but not all) local-
ities onshore, strengthening the contention that both were produced by plate-wide earthquakes. We also observe that the
sequence of Holocene events in Cascadia may contain a repeating pattern, a tantalizing look at what may be the long-term
behavior of a major fault system. Over the last 7500 years, the pattern appears to have repeated at least three times, with
the most recent A.D. 1700 event being the third of three events following a long interval of 845 years between events T4
and T5. This long interval is one that is also recognized in many of the coastal records, and may serve as an anchor point
between the offshore and onshore records. Similar stratigraphic records are found in two piston cores and one box core
from Noyo Channel, adjacent to the Northern San Andreas Fault, which show a cyclic record of turbidite beds, with thir-
ty-one turbidite beds above a Holocene/.Pleistocene faunal «datum». Thus far, we have determined ages for 20 events
including the uppermost 5 events from these cores. The uppermost event returns a «modern» age, which we interpret is
likely the 1906 San Andreas earthquake. The penultimate event returns an intercept age of A.D. 1664 (2 range 1505-
1822). The third event and fourth event are lumped together, as there is no hemipelagic sediment between them. The age
of this event is A.D. 1524 (1445-1664), though we are not certain whether this event represents one event or two. The fifth
event age is A.D. 1204 (1057-1319), and the sixth event age is A.D. 1049 (981-1188). These results are in relatively good
agreement with the onshore work to date, which indicates an age for the penultimate event in the mid-1600’s, the most like-
ly age for the third event of 1500-1600, and a fourth event 1300. We presently do not have the spatial sampling need-
ed to test for synchroneity of events along the Northern San Andreas, and thus cannot determine with confidence that the
observed turbidite record is earthquake generated. However, the good agreement in number of events between the onshore
and offshore records suggests that, as in Cascadia, turbidite triggers other than earthquakes appear not to have added sig-
nificantly to the turbidite record along the northernmost San Andreas margin during the last 2000 years.
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only a few years. However, real-time strain
measurements can only represent a fraction of
one strain cycle. Fundamental questions such as
the utility of the seismic gap hypothesis, cluster-
ing, and the applicability of slip-predictable or
time-predictable models remain unanswered
because we rarely have a long enough earth-
quake record. Characteristic earthquake models
assume that stress buildup is proportional to the
time since the last earthquake. The seismic gap
hypothesis follows directly from this assump-
tion, and is the basis for probabilistic predictions
of seismicity. Recently, characteristic earthquake
models and their derivatives have been chal-
lenged by new models of stress-triggering and
fault interaction. In these models, strain recharge
following an earthquake is supplied only indi-
rectly by the underlying motion of the plates,
and the stress on each fault segment is controlled
by the action and history of the surrounding seg-
ments (e.g. Stein et al., 1992; Ward and Goes,
1993). The applicability of these models may
well be system dependent, may differ between
plate boundary versus crustal faults, or depend
on magnitude. What is needed most to address
these questions is data on spatial and temporal
earthquake recurrence for more fault systems
and over longer spans of time, so that meaning-
ful statistical conclusions can be drawn.

Paleoseismology can address these questions
on active continental margins. Two methodolo-
gies used in recent years are coastal paleoseis-
mology and investigation of the turbidite event
history. Unlike more typical paleoseismology on
land, neither technique uses fault outcrops
because the faults are entirely offshore, and both
techniques must demonstrate that the events they
are investigating are uniquely generated by
earthquakes and not some other natural phenom-
enon. Nevertheless, these problems can be over-
come, and both techniques can be powerful tools
for deciphering the earthquake history along an
active continental margin. The turbidite record
has the potential to extend and earthquake histo-
ry farther back in time than coastal records,

10.000 years, more than enough to encompass
many earthquake cycles. In recent years, tur-
bidite paleoseismology has been attempted in
Cascadia (Adams, 1990; Goldfinger and Nelson,
1999; Goldfinger et al., 2003; Nelson et al., 2003),

Puget Sound (Karlin and Abella, 1992), Japan
(Inouchi et al., 1996), the Mediterranean
(Kastens, 1984; Anastasakis and Piper, 1991;
Nelson C.H. et al., 1995), the Dead Sea (Niemi
and Ben-Avraham, 1994), Northern California
(Field, 1984) and even the Arctic ocean (Grantz
et al., 1996), and is a technique that is evolving
as a precise tool for seismotectonics. 

We have been investigating the use of turbi-
dites as paleo-earthquake proxies at the Cascadia
subduction zone and along the Northern San
Andreas Fault. A growing body of evidence from
both of these margin settings suggests that with
favorable physiography and sedimentological
conditions, turbidites can be used as earthquake
proxies with careful spatial and temporal correla-
tions.

New stratigraphic evidence from the Ca-
scadia margin confirms that 13 turbidites were
deposited in major channel systems along the
margin from Vancouver Island to at least the
California border (Adams, 1990) following the
catastrophic eruption of Mount Mazama.
Nelson et al. (2003) have interpreted these tur-
bidites as having been triggered by great sub-
duction earthquakes. These 13 events have
occurred with an average repeat time of 600
years since the first post-Mazama event 7500
years ago (fig. 1a,b), and the youngest event

300 years ago approximately coincides with
widespread evidence of coastal subsidence and
tsunami inundation in buried marshes along
the Cascadia coast. In this paper we further
develop the earthquake hypothesis for the ori-
gin of Cascadia turbidites, and extend the Ho-
locene turbidite record to 9850 years, during
which 18 events may correlate along the same
region. We also observe that the sequence of
Holocene events in Cascadia appears to contain
a repeating pattern of events, a tantalizing first
look at what may be the long-term behavior of
a major fault system. 

On the Northern California margin, we col-
lected two piston cores and one box core from
Noyo Channel, draining the Northern Califor-
nia continental margin adjacent to the San An-
dreas Fault. Like Cascadia, these cores show a
cyclic record of turbidite beds that may repre-
sent Holocene earthquakes on the northern seg-
ment of the San Andreas Fault. Here we present
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new evidence that these turbidites may repre-
sent an earthquake record of the Northern San
Andreas system. In total, thirty-one turbidite
beds are found above the Holocene/Pleistocene
( 9 ka) boundary yielding an average recur-
rence time of 300 years. The ages of the
youngest five Northern San Andreas events are
in reasonably good agreement with onshore
paleoseismic event ages and repeat times. While
we presently cannot unequivocally demonstrate
that these deposits are earthquake generated, the
age similarities and similar number of onshore
and offshore events suggests this origin.

2.  Cascadia paleoseismic history

The past occurrence of great earthquakes in
Cascadia is now well established in Cascadia
coastal marsh stratigraphy (e.g. Nelson A.R. 
et al., 1995; Atwater and Hemphill-Haley,
1997; Clague, 1997; Kelsey et al., 2002), and
tsunami records in Japan (Satake et al., 1996).
More recently, the turbidite event record is
being investigated as a long-term proxy for
Holocene great earthquakes (Nelson et al.,
2003). Consequently, attention has turned to
magnitude, recurrence intervals, and segmenta-
tion of the margin. Segmented and whole mar-
gin ruptures should leave distinctly different
stratigraphic records in both the coastal marsh-
es and the offshore turbidite record, however
the difficulties of precisely dating stratigraphic
evidence of past earthquakes makes unraveling
the paleoearthquake record a challenging prob-
lem.

3.  The coastal record 

Paleoseismic evidence on land is found in the
form of subsided marsh surfaces and tsunami
runup or washover deposits of thin marine sand
layers with diatoms that are interbedded within
estuarine or lake muds (Atwater, 1987, 1992;
Darienzo and Peterson, 1990; Atwater et al.,
1995; Hemphill-Haley, 1995; Nelson et al., 1995;
Hutchinson et al., 2000; Kelsey et al., 2002;
Nelson et al., 2000). The tsunami deposits are
found several kilometers inland from the coast,

up river estuaries, or in low-lying freshwater
lakes near sea level, but above the reach of 
storm surges. A 3500-year record of such tsuna-
mi events is encountered in Willapa Bay, Wa-
shington (Atwater and Hemphill-Haley, 1997).
A 7300-year record is under investigation in
Bradley Lake, Oregon (Nelson et al., 2000; Ol-
lerhead et al., 2001). A 5500-year record is also
being studied in Sixes River estuary (Kelsey et
al., 1998, 2002). Time variance for recurrence
intervals of the Willapa Bay tsunami events is as
much as 990 years or as little as 140 years
between events (Atwater and Hemphill-Haley,
1997). A total of 17 tsunami events have been
recognized in the Bradley Lake sediments, where
the maximum (900 years) and minimum (100
years) time variance are similar to that found in
Willapa Bay (Hemphill-Haley et al., 2000). The
Bradley Lake tsunami events are presumed to be
local and not distant tsunami on the basis of the
height requirement to wash over the spit that sep-
arates the lake from the sea. The Sixes River
record of 11 events in 5500 years is found 110
km south of Bradley Lake, and also exhibits a
wide variance in time between subduction zone
earthquake events from 70 years to 900 years
(Kelsey et al., 1998, 2002). In addition to the
similar range in time variance between recur-
rence of events ( 100 to 1000 years) in these
long-term coastal records, the average recurrence
interval is similar for the Willapa and Sixes River
estuaries (500-540 years) and slightly less for
Bradley Lake (440 years) (Kelsey et al., 1998,
2002; Nelson et al., 2000). Kelsey et al. (1998,
2002) find that the Willapa and Sixes estuary
paleoseismic events are comparable for 2400 to
3500 years BP, differ between 2400 to 800 years
BP, and both include the 1700 A.D. event (Jacoby
et al., 1997; Yamaguchi et al., 1997). The records
of repeated subsidence and tsunami inundation
followed by emergence are most likely paleoseis-
mic events because multiple soils buried by estu-
ary muds show evidence of rapid subsidence,
followed immediately by incursion of tsunami
sands with marine diatoms over the wetland soil
surface. Some are associated with liquefaction
features (Atwater and Hemphill-Haley, 1997;
Kelsey et al., 1998, 2002). The Bradley Lake
record is based only on tsunami deposited sands,
exhibits a relatively greater number of events per

1172

Chris Goldfinger, C. Hans Nelson, Joel E. Johnson and the Shipboard Scientific Party



unit time than the estuary records, and has 12
events requiring a tsunami inundation of > 5.5 m. 

The most abundant high precision age data
are available for the most recent subsidence
event, which probably occurred within a few
decades of 1700 A.D. ~ 300 years ago. Dendro-
chronology of western red cedar in Washington
and other Northern Oregon estuaries show tree
death occurred between August, 1699 and May
1700 (Jacoby et al., 1997; Yamaguchi et al.,
1997), and was most likely due to salt water
incursion due to subsidence. The age of this
event is supported by evidence of a far-field
tsunami in Japan on January 26, 1700 A.D.,
which has been attributed to a subduction earth-
quake on the Cascadia subduction zone (Satake
et al., 1996). The ~ 300 year event is wide-
spread, with evidence found from Northern
California to Vancouver Island (Clague, 1997).
For older events, error bars for numerical ages
are significantly larger and the difficulty in
identifying anomalous local subsidence events
increases. The land record of submergence, tree
death, and tsunami, as well as the turbidite
record offshore all require correlation along
strike to determine whether events represent
whole margin or segmented rupture. In the case
of the land record, earthquake origin has been
quite well established, but correlation remains
elusive. Conversely, with the offshore record,
the consistency of the records and several key
tests of synchronicity demonstrates a probable
consistent correlation, while demonstrating
earthquake origin is more difficult. 

4.  Turbidite correlation and dating methods

The use of turbidite deposits as paleoearth-
quake proxies is, like other forms of paleoseis-
mology, dependant on as complete as possible
an understanding of the depositional environ-
ment, physiography, and dynamics of emplace-
ment of the stratigraphic record. In this section,
we outline some of the methods we and others
are developing to test the viability of this proxy
record.

Channel pathway analysis – Turbidity cur-
rents result from channel wall slumps, mostly

of unconsolidated material, in the upper reach-
es of canyons. Large slumps of older blocky
material into a channel may attenuate or deflect
turbidity currents that might otherwise travel to
core sites on the abyssal plain. We analyze the
thalweg profiles of the channel systems, along
with the swath bathymetry along the channel
walls to search for such slumps that may have
blocked or diverted turbid flows, thus biasing
the stratigraphic record downstream (fig. 2).
Another possible influence is folding and fault-
ing. Griggs and Kulm (1970) showed that major
turbidity currents are up to 100 m high and 17
km wide in Cascadia Basin. Thus faulting and
folding at reasonable slip rates, and even mod-
erate slumping are perhaps unlikely sources of
disruption of channel flow, though large slides
and faults with high slip rates might be capable
of biasing the downstream record.

Core siting – In our Cascadia work, we
found that surface morphology in the channels
was a critical factor in choosing exact sample
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location. In a gross sense, distance from the
source and distance from the channel thalweg
controls grain size. In detail, we found that the
turbidite record was very robust and best pre-
served in thalwegs, on point bars, in the lee of
point bars, and on low terraces above the thal-
weg. In general, we try to sample each system
both down channel, and across major channels
in order to capture a complete event record and
test for sensitivity in both directions. The qual-
ity of the record, and our ability to capture the
Holocene interval was, however, sensitive to
local conditions. After some trial and error we

found that sampling in the lee of point bars was
a good strategy in proximal locations (fig. 3).
These locations included the complete record,
did not include very coarse material, and tend-
ed to have a somewhat expanded record, which
increases dating precision by reducing the sam-
ple interval needed to get enough forams for 14C
dating. In more distal localities, we sampled
local sediment pools to find an expanded record
in areas that otherwise had lower than optimal
sedimentation rates. In any given setting some
trial and error is required to choose sites that
offer optimal conditions, an expanded record,
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and a Holocene section that can be cored with
existing gear. Backscatter data, where available,
were used together with bathymetric data to
reveal depositional patterns, relative grain size
distribution, and to determine the most active
channels (fig. 4). 

Age Control – AMS 14C ages are determin-
ed from planktonic forams deposited in the
hemipelagic sediments that underlie each tur-
bidite sequence. Benthic forams could be re-
worked, as could previously deposited plank-
tonic forams entrained in the turbidite deposit,
thus care is taken to select only hemipelagic
planktonic forams. Benthic forams may be un-
reliable and give erratic ages, possibly due to
the unknown deep-water reservoir correction
(M. Kashgarian, Lawrence Livermore Lab.,
2000). Our foram assemblages were dominated
by Turborotalia pachyderma (sinistral and dex-
tral) and Globigerina bulloides, but used all 
(~ 20) planktonic species in most cases (D.
Boettcher, MicroPaleo Associates, written re-
port, 2003). Previous work has shown that in mid
to distal parts of the Cascadia Channel systems,
there is little evidence of erosive turbidite em-

placement, thus sampling in the hemipelagic
interval immediately below the coarse tur-
bidite base is used to date events. Our ration-
ale is to collect samples from the youngest
hemipelagic interval between events to date
the overlying event. Though there may be
some erosion of this interval, thus biasing
events to slightly older ages, we use more dis-
tal cores, which are less likely to have basal
erosion for primary dating, and inspect the
bases visually for evidence of erosion.
Although bioturbation blurs the age of the sur-
face 10 cm or so, there is some evidence that
large grains such as forams are not moved ver-
tically within the sediment as much as the sed-
iment is bioturbated, reducing this problem
somewhat (Thomson and Weaver, 1994). The
cores are examined for organic matter and
mica, which is characteristic of turbidite tails
in this area, and samples are taken once the
upper and lower limits of the turbidites are
found. The hemipelagic fraction is also distin-
guished by greater bioturbation (e.g. Nelson,
1968; Griggs et al., 1969).

Because planktonic forams can be reworked
when they are entrained in the turbidite deposit,

1175

Deep-water turbidites as Holocene earthquake proxies: the Cascadia subduction zone and Northern San Andreas Fault systems

Fig.  4. 100 m resolution shaded swath bathymetry of a portion of Astoria Canyon, Northern Oregon. The sit-
ing of turbidite cores at sea is facilitated by using 3D visualization of the canyon/channel morphology. To obtain
the most complete turbidite record we avoid erosive channel thalwegs and coarse grained frontal point bars. We
found non-erosive complete records in the lee of point bars, such as this site for core M9907-04BC. 



we sieve the > 0.062 mm sand fraction and
carefully hand-pick planktonic forams only
from the minimum interval needed to acquire
enough forams (1-4 cm) of hemipelagic sedi-
ment below the base of the turbidite and above
any underlying turbidite tail. Raw AMS radio-
carbon ages are reservoir corrected and con-
verted to calendar years (cal years) by the
method of Stuvier and Braziunas (1993).
Though there may be a time-varying surface
reservoir age (Southon et al., 1990), this has not
yet been demonstrated. In Cascadia Channel,
our AMS intercept age for the youngest event is
304 years BP, for the known 1700 Cascadia
event. Additionally, the first post-Mazama tur-
bidite event also is within 150 years of the
most current Mt. Mazama eruption age (7627 ±
±150; Zdanowicz et al., 1999). Both these ages
indicate the reservoir corrections are approxi-
mately correct. 

Event correlation and recurrence intervals –
We address the mean interval between turbidite
events and variability of this mean by two semi-
independent methods: 1) directly dating the
events, and 2) detailed analysis of the hemi-
pelagic sediment interval between turbidite e-
vents in selected new cores. This requires de-
tailed analysis of coarse fraction constituents to
separate the turbidite tail muds from the incep-
tion of the hemipelagic sediment. We analyzed
all cores using the OSU Geotech MST system,
collecting gamma (GRAPE) density, P-wave
velocity and magnetic susceptibility series for
each core. In order to establish a complete
chronology at a given site, correlation between
the piston and trigger cores, box cores, and some-
times multiple cores at the same site is need-
ed. This is because the tops of cores are some-
times lost (most common with piston cores),
and separation of core segments may also oc-
cur in the piston core. Correlation between mul-
tiple cores aided by the MST data is essential in
these cases. We also utilize x-radiographs to
image details of the individual turbidites,
search for multiple coarse pulses, or multiple
events, and identify the top of the turbidite tails.
The x-radiographs are proving invaluable, par-
ticularly in the San Andreas cores where multi-
ple pulses are common.

5.  The Cascadia turbidite record

Concurrent with the discovery of the first
buried marsh sequences on land, Adams (1985,
1990) assessed the possibility that turbidites in
channels of Cascadia Basin contained a record
of great earthquakes along the Cascadia margin.
He examined core logs for the Cascadia Basin
channels, and determined that many of them
had between 13 and 19 turbidites overlying the
Mazama ash datum. In particular, he found that
three cores along the length of Cascadia chan-
nel contain 13 turbidites and argued that these
13 turbidites correlate along the channel (as did
Griggs and Kulm, 1970). Adams observed that
cores from Juan de Fuca Canyon, and below 
the confluence of Willapa, Grays, and Quinault
canyons, contain 14-16 turbidites above the
Mazama ash. The correlative turbidites in
Cascadia Channel lie downstream of the con-
fluence of these channels. If these events had
been independently triggered events with more
than a few hours separation in time, the chan-
nels below the confluence should contain from
26-31 turbidites, not 13 as observed. The im-
portance of this simple observation is that it
demonstrates synchronous triggering of turbi-
dite events in channel tributaries, the head-
waters of which are separated by 50-150 km.
Similar inferences about regionally triggered
synchronous turbidites in separate channels are
reported in Pilkey (1988). The extra turbidites
in the upstream channels may be the result of
smaller events. This synchronicity test is a
powerful relative dating technique that is com-
pletely independent of radiocarbon dating,
which rarely has the precision to correlate
events.

In July, 1999, we collected 44 (4 diam.) pi-
ston cores, 44 companion trigger cores (also
4 ) and eight 30 cm box cores in every major
canyon/channel system from the northern limit
of the Cascadia subduction zone near the
Nootka Fault, to Cape Mendocino at its south-
ern terminus (fig. 1a; Goldfinger and Nelson,
1999; Nelson and Goldfinger, 1999; Goldfinger
et al., 2003). Cores were run through the MST
scanner as whole rounds to collect density,
velocity, and magnetic susceptibility data, then
split, photographed and described on board. 

1176

Chris Goldfinger, C. Hans Nelson, Joel E. Johnson and the Shipboard Scientific Party



We find that thirteen post-Mazama events
are found along 600 km of the margin in the
Cascadia, Willapa, Grays, Astoria, Juan de
Fuca, and Rogue Canyon/Channel systems
(figs. 1 and 5 to 7; Nelson et al., 2003). Though
the Holocene-Pleistocene boundary is a bit less
certain as a datum, these same channels also
have 18 post-datum events, extending this rec-
ord to ~ 10.000 years. In previously existing
cores, we found only 3 post-Mazama events in
middle and lower Astoria Channel, which ap-
peared to contradict Adams (1990) hypothesis
for 13 events. In 1999 cores, we find a progres-
sive loss of turbidites from 13 to 10 to 7 to 6 to
5 events at each successive downstream chan-
nel splay in the distributary upper Astoria Fan.
This down-channel loss of events resulting in
only 3 events in the mid-lower Astoria Channel
explains the previous contradiction, and shows
that the post-Mazama turbidite record is consis-
tent along the margin. 

6.  Mechanisms for triggering of turbid flows

Adams (1990) made a convincing case for
synchroneity of Cascadia margin events. But
are these events all triggered by earthquakes?
Adams suggested four plausible mechanisms
for turbid flow generation: 1) storm wave load-
ing; 2) great earthquakes; 3) tsunamis, and 4)
sediment loading. To these we add 5) nearby
crustal earthquakes, 6) in-slab earthquakes, 7)
aseismic accretionary wedge slip, 8) hyperpyc-
nal flow, and 9) gas hydrate destabilization. All
of these mechanisms may trigger individual
submarine slides and or turbid flow events, but
how can earthquake-triggered events be distin-
guished from other events? Investigators have
attempted to distinguish seismically generated
turbidites from storm, tsunami, and other
deposits. Nakajima and Kanai (2000) and Shiki
et al. (2000) argue that seismo-turbidites can in
some cases be distinguished sedimentolog-
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ically. They observe that known seismically
derived turbidites in the Japan Sea and Lake
Biwa are distinguished by wide areal extent,
multiple coarse fraction pulses and variable
provenance (from multiple or line sources), and
greater depositional volume than storm-gener-
ated events. These investigators observe that
known seismo-turbidites caused multiple slump
events in many parts of a canyon system, gen-
erating multiple pulses in an amalgamated tur-
bidity current, some of which sampled different
lithologies that are separable in the turbidite
deposit. In the Japan Sea, the stacked deposits
are deposited in order of travel time to their

lithologic sources, demonstrating synchronous
triggering of multiple parts of the canyon sys-
tem. These turbidites are also complex, with
reverse grading, cutouts, and multiple pulses.
Gorsline et al. (2000) make similar observa-
tions regarding areal extent and volume for the
Santa Monica and Alfonso Basins of the
California borderland and Gulf of California
respectively. In general, these investigators
observe that known storm sediment surges are
thinner, finer grained and have simple normally
graded Bouma sequences. We observe that
many, but not all, of the turbidite sequences in
Cascadia are similar to the historically known
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seismic turbidites reported by Nakajima and
Kanai (2000; their fig. 3). 

While there may yet be applicable global,
regional or local criteria to distinguish between
turbidite triggers, these are at present poorly
developed. Thus far in Cascadia, we have not
attempted to distinguish between triggering
mechanisms with sedimentological criteria, but
have used the spatial and temporal pattern of
event correlations and Adams’ synchronicity
test at the confluence of Willapa, Juan de Fuca,
and Cascadia channels to establish a regional
correlation that cannot be the result of triggers
other than earthquakes. We confirm Adams’
results from the channel confluence of 13 post-
Mazama events both above and below the con-
fluence. Because turbidity currents deposit their

loads in a matter of hours, they are excellent
relative dating horizons, the relative age resolu-
tion provided by this feature of turbidites is far
greater than any radiometric or other absolute
technique. The synchronicity of event records
established at the confluence effectively elimi-
nates non-earthquake triggers because other
possible mechanisms are extremely unlikely to
trigger slides in separate canyons only a few
hours apart. This would have to have take place
13 consecutive times to produce the core record
we observe. The correlation is strengthened by
extending the record to 18 Holocene events at
all sites between the Smith River and Juan de
Fuca Canyon. While this does not have the
same power as the confluence test, the similar-
ity is striking, and very unlikely to have oc-
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Fig.  7. Summary core logs and digital photographs of all sections of Cascadia Channel core M9907-25PC. See
fig. 1a for location.



curred without a regional earthquake trigger. 
An alternative explanation could be a series of
earthquakes that took place within hours of
each other along the length of the margin.
While possible, the precision of the relative dat-
ing provided by the time of settling of turbid
flows restricts this to only a few hours time for
Central Washington. Additionally, whatever se-
quence of events occurred, it would also have to
take place in such a way that the stratigraphic
record yields 18 events in all locations. Again
this is not impossible, but far less likely than 
the simplest explanation, that of 18 plate wide
events. We are presently exploring other corre-
lation techniques that may enable direct linkage
of the Rogue and either Cascadia or Rogue
records, which do not have a confluence, and
thus are not positively correlated. 

We can make some additional observations
about the applicability of other triggers that
might be expected to generate turbid flows.
Storm wave loading is a reasonable mechanism
for triggering of turbid flows, but is an unlike-
ly trigger in Cascadia. On the Oregon and
Washington margins, although deep-water
storm waves are large, the canyon heads where
sediment accumulation occurs are at water
depths of 150-400 m. These depths are at or
below the maximum possible for disturbance
by storms with historical maximum signifi-
cant wave heights of ~ 20 m, though rare mega
storms cannot be ruled out. Tsunamis may also
act as a regional trigger, however the 1964
Alaska Mw 9.0 event did not trigger a turbidite
observed in any of the cores, although it did
serious damage along the Pacific coast (Adams,
1990). Crustal or slab earthquakes could also
trigger turbidites. To investigate this possibility,
we resampled the location of a 1986 box core in
Mendocino Channel, where the uppermost event
is suspected to be the 1906 San Andreas event.
Since 1986, the Mw 7.2 Petrolia earthquake
occurred in 1992, either on the plate interface or
lowermost accretionary wedge landward of this
site (Oppenheimer et al., 1993). Despite the epi-
central distance of only a few kilometers from
the canyon head, we were surprised to find no
surface sand in the 1999 box core, nor was it
present at other Southern Cascadia Channel lo-
cations. At least for this event, an Mw 7.2 earth-

quake was not sufficient to trigger a turbid flow,
or alternatively, insufficient sediment was pres-
ent. Conversely, the Mw = 6.9 Loma Prieta earth-
quake apparently did trigger some type of turbid
flow in Monterey Canyon at a much greater epi-
central distance (Garfield et al., 1994).

The remarkable similarity of turbidite rec-
ords in channels systems monitoring the north-
ern 2/3 of the Cascadia margin suggests strong-
ly that at least this part of Cascadia has experi-
enced 13 post-Mazama events, and 18 Holo-
cene events (fig. 1a,b). These events were suf-
ficiently large to both generate turbidites, and
to correlate along the length of the margin.
Further correlation is presently underway
using radiocarbon dating, but will face difficul-
ties with the accumulated errors and uncertain-
ties. Nevertheless, the circumstantial case pre-
sented by Adams (1990) is now considerably
stronger. 

South of the Rogue Canyon, the turbidite
event frequency for the Northern Gorda plate
region may also contain 18 events in Smith and
Klamath canyons. The Northern California
channels contain no Mazama ash, and have a
more diffuse Holocene/.Pleistocene faunal
boundary, thus correlation will depend heavily
on radiocarbon dates. For the Southern Gorda
area the events are much more frequent. AMS
ages for events in the Southern Gorda region
indicate average turbidite recurrence intervals
of 133, 75, and 34 years respectively for the
Trinidad, Eel, and Mendocino channels, in-
creasing progressively toward the Mendocino
triple junction. The number of possible earth-
quake sources for triggers also increases pro-
gressively toward the triple junction, and in-
cludes the Mendocino and Blanco faults, in-
ternal Gorda plate faults, and perhaps the
Northern San Andreas. The potential for sedi-
mentological triggering is also higher, with the
Eel, Trinidad, and Mendocino Canyon heads
very close to the coast, increasing the likeli-
hood of hyperpycnal flow input. Three earth-
quakes of magnitude 6.9 to 7.4 have occurred
in the past 21 years in the triple junction area.
However, we estimate that the 10-14 cm of
hemipelagic sediment at the surface in
Mendocino Channel represents 50 to 70 of
deposition, thus these three earthquakes have
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not triggered turbid flow events in Mendocino
Channel.

Unlike the other Cascadia systems, both Eel
and Mendocino canyon heads erode close to the
shoreline where the canyon heads may intersect
littoral drift sediment that can be funneled down-
canyon by storms. Given the probable mix of
interplate, intraplate, and sedimentological (non-
earthquake) events in the Southern Gorda region,
we are as yet unable to make detailed inferences
about the earthquake record in this area.

7.  Turbidite recurrence interval data

We have plotted the turbidite event age ver-
sus recurrence interval for the individual event
pairs available as of this writing (fig. 8). The
plot includes the best of our «key» cores thus
far, M9907-12PC from Juan De Fuca Canyon
(figs. 5 and 6). This is the first of our cores to
have all Holocene turbidite events dated, with
several latest Pleistocene events included, up to
event T21 (T19 is not included due to age rever-
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sal for that event). The plot also includes partial
records for the Cascadia and the Rogue sys-
tems, for which complete AMS age results are
not yet available. The recurrence period versus
time plot has some strengths, the principal one
being that comparing cores uses the pattern of
recurrence rather than the raw ages, which have
not been corrected for sedimentation rate, pos-
sible basal erosion, and tuning of the 14C reser-
voir correction. Each interval is arbitrarily plot-
ted at the younger event age that delimits the
interval. Where an event is defined by multiple
ages due to multiple intercepts on the 14C cali-
bration curve, we use the median age if there is
no statistical preference. 

The average post-Mazama recurrence time
based on the Juan de Fuca core is 581 years,
with the shortest interval being 222 years (T8-
T9), the longest 1488 years (T10-T11). The
average post-Mazama recurrence interval using
an age for T13 averaged from all channels is 

600 years. The mean recurrence time based
on all available intervals is 564 years, which
is the Holocene average for 18 events terminat-
ed by the A.D. 1700 event that occurred 250
years before the 1950 reporting standard for cali-
brated radiocarbon ages (9841-250/17). This
average is based on the average of three AMS
ages for event T18 from our key cores in Juan de
Fuca, Rogue, and Cascadia channels. These ages
are 9849 (10287-9784), 9851 (10290-9583), and
9824 (10274-9540) for Cascadia, Juan de Fuca,
and Rogue channels respectively.

With a single complete, but uncorrected re-
cord, the patterns may (or may not) be robust,
but there does seem to be a repeating pattern of
a long interval ending in an earthquake, fol-
lowed by a moderately long interval, then 1 or
2 shorter intervals. Over the last 7500 years,
the pattern appears to have repeated three times,
with the most recent A.D. 1700 event being the
third of three events following a long interval of
845 years between events T4 and T5. This long
interval is one that is also recognized in many
of the coastal records, and may serve as an
anchor point between the offshore and onshore
records. The partial Rogue and Cascadia records
show a possible pattern correlation with the
complete Juan De Fuca record for the overlap-
ping events.

While it is temping to expound about earth-
quake clustering and long-term fault behavior,
we emphasize here that the analysis shown in
fig. 8 is incomplete, and confirmation of this
pattern will require age data from the other key
cores that is not yet available. We are encour-
aged that despite occasional reversed ages and
other problems inherent in paleoseismology,
the extensive turbidite event record in Cas-
cadia Basin will overcome these problems and
using pattern matching and correlation, will
provide a robust long-term paleoseismic histo-
ry.

8.  Preliminary investigation of turbidite se-
quences along the Northern California
margin

Following on the successful Cascadia effort,
we are beginning an investigation of the Holo-
cene rupture history of the Northern San An-
dreas Fault using similar methods. The plan
includes collection of a spatially extensive set
of new piston cores in channel systems draining
the adjacent continental margin from south of
San Francisco to the Mendocino Triple Junc-
tion. This work will utilize a number of «Key»
cores to develop the Holocene event record in
all channel systems draining Northern Cali-
fornia. Fortunately, we already have one of these
«Key» cores, M9907-49PC, collected in 1999
as part of the Cascadia project as a control core
in Noyo Channel (figs. 9 to12). We are pres-
ently using this piston core and a companion
box core to develop an event history for the
northern end of the San Andreas system.

The physiography of the margin is ideal for
this investigation. The Northern San Andreas
fault has a single main fault strand (Castillo and
Ellsworth, 1993), and few other regional or local
seismic triggers are available. The margin chan-
nels are numerous, and offer excellent spatial
sampling of the Holocene record along this im-
portant fault system. The Northern San Andreas
offers an excellent opportunity to investigate the
long-term history of a relatively simple fault sys-
tem, and relate that history to the current contro-
versy over characteristic versus stress triggering
models of earthquake behavior.
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Fig.  9. Map showing channel systems, onshore major faults, and location of 1999 core M9907-49PC on Noyo
Channel. Summary of land paleoseismic data along the San Andreas is also shown. Inset shows age constraints for
recent events reported at land sites with turbidite event data (T-values and horizontal lines – due to basal erosion, T3
cannot be dated). Horizontal dashed band in mid 1600’s is the estimated age of the penultimate event from trenching
(.T.) and dendrochronology (D) at Grizzly Flat. Grey vertical bars in inset show the 2 age ranges of radiocarbon dates
used to constrain the age of onshore recent events. Up arrows indicate the event post-dates the age range, down arrows
indicate the event pre-dates the age range. Red vertical bars on turbidite events represent the one and two sigma range
for Noyo Canyon ages. Numbers (with errors) and letters locate slip rates and event chronology sites. PA - Point
Arena; FR - Fort Ross; V - Vedanta; O - Olema; D - Dogtown; GG - Golden Gate; SF - San Francisco; SE - Seal
Cove; LCS - Lower Crystal Springs; F - Filoli; AN - Ano Nuevo; SJ - San Jose; NA - New Almaden; GF - Grizzly
Flat; C - Corralitos; CC - Coward Creek; W - Watsonville; PG - Pajaro Gap; SJB - San Jaun Bautista; SC - Santa Cruz;
M - Monterey; NC - North Coast segment, containing all segments. (Land data after Schwartz et al. (1998), modified
from Niemi and Zhang (2000). Data added at Arano Flat from Fumal et al. (1999)). Offshore channels interpreted
from GLORIA sidescan sonar data and offshore bathymetric compilation, this study. 
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9.  Northern San Andreas seismotectonic
setting

The San Andreas Fault is probably the best-
known transform system in the world. West of
the Sierra Nevada block, three main fault sys-
tems accommodate ~ 75% of the Pacific-North
America plate motion, distributed over a 100
km wide zone (Argus and Gordon, 1991). The
remainder is carried by the Eastern California
shear zone (Argus and Gordon, 1991; Sauber,
1994). The Northern San Andreas is the main
system, accommodating about 25 mm/yr of 
the ~ 34 mm/yr distributed across Western Cali-
fornia. Most of the remainder is taken up on the
parallel Hayward-Rogers Creek system, and the
slightly divergent Calaveras Fault System fur-
ther to the east. South of San Francisco, the
transform system becomes more complex, and
includes the offshore San Gregorio Fault, which
joins the Northern San Andreas at Olema, just
north of San Francisco (fig. 9). Between San
Francisco and Cape Mendocino, the main strand
of the San Andreas is a relatively simple system
with most strain localized on the main strand.
Seismicity offshore is virtually nil, with the
exception of the Mendocino triple junction
region. Since the 1906 rupture, the main San
Andreas has been nearly aseismic, with only a
few small events near Pt. Arena. 

10.  Northern San Andreas onshore 
paleoseismicity

The San Andreas system has been intensely
studied on land, and has been divided into seg-
ments based on its historical record of earth-
quake behavior. The northern segment ruptured
in the 1906 Mw 7.8 earthquake, and rupture ex-
tended from the at least San Francisco north to
Shelter Cove near Point Delgada (fig. 9). The pa-
leoseismic history of the Northern San Andreas
system is presently under investigation using
trenching and marsh coring. The Mw 7.8 earth-
quake in 1906 clearly ruptured the surface a-
long the San Francisco Peninsula to as far north
as Point Arena (Lawson, 1908). Some debate
exists regarding the full length of the 1906 rup-
ture. Original investigations of surface rupture

are summarized in Lawson (1908), and includ-
ed a description of surface rupture as far north
as Shelter Cove. Much later, McLaughlin et al.
(1979, 1983) questioned these reports on the
basis of bedrock mapping which indicated that
the main fault strand had not displaced features
dated at 13000 years BP. Seismological evi-
dence does not require slip on the San Andreas
north of Point Arena, though Thatcher et al.
(1997) infers from geodetic data that 8.6 m of
slip occurred on the fault in the Shelter cove
area. Brown (1995) re-examined surface mor-
phology and the original field reports by F.E.
Mathes from 1906, and concluded that the orig-
inal reports of surface rupture were correct, and
that many effects of the rupture are still observ-
able today. Most recently, Prentice et al. (1999)
also re-examined Mathes’ field notes and pho-
tographs and trenched along the 1906 rupture.
Like Brown (1995), they conclude that abun-
dant evidence for 1906 rupture exists, and esti-
mate a minimum slip-rate of 14 mm/yr for the
Northern San Andreas based on a 180 m offset
of colluvial deposits dated at 13.180 ± 170 cal
years BP. The southern end of the rupture
extends as far south as the Santa Cruz moun-
tains (Schwartz et al., 1998), giving a minimum
rupture length of 470 km.

The paleoseismology of the Northern San
Andreas has been investigated at Olema, 45 km
north of San Francisco, at Dogtown, close to the
Olema site, at Point Arena, and at Grizzly Flats
in the Santa Cruz mountains. At the Vendanta
site near Olema, Niemi and Hall (1992) found
that offset stream channels showed that the fault
ruptured along a single main strand, and offset
stream deposits dated at 1800 ± 78 years by 40-
45 m. The maximum Late Holocene slip rate
derived from these data is 24 ± 3 mm/yr, in good
agreement with geodetic data. They estimate that
if the 4-5 m slip event recorded in 1906 were
characteristic, the recurrence time for such
events would be 221 ± 40 years. At Point Arena,
145 km to the northwest, Prentice (1989) rec-
ognized four events that offset a Holocene allu-
vial fan channel by 64 ± 2 m. The maximum slip
rate calculated at Point Arena is 25.5 mm/yr, in
excellent agreement with the Olema data. The
average slip per event at Point Arena implies a
recurrence time of 200-400 years (Prentice,
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1989). Dated offset terrace deposits suggest that
this rate has not changed by more than about
20% since Pliocene time (Prentice, 1989). The
best age derived for the penultimate event is the
mid 1600’s (Schwartz et al., 1998), and the
most likely ages for the previous three events
were: #.3 1300 (post A.D. 1150, pre A.D.
1650), and two events pre A.D. 1210 and post
A.D. 1, totaling five events in 2000 years (Pre-
ntice, 1989, 2000; Niemi and Zhang, 2000).
Schwartz et al., 1998 also show an additional
event at several sites in the early-mid 1500’s.

A controversial aspect of Northern San An-
dreas tectonics has been whether the fault is

segmented, with variable behavior for each seg-
ment, or whether the 1906 rupture was charac-
teristic. The consistent slip rates found north of
the Golden Gate, slow to about 17 mm/yr south
of the Golden Gate. This and a lower co-seis-
mic slip south of the Golden Gate (Segall and
Lisowski, 1990; Prentice and Ponti, 1997;
Thatcher et al., 1997) led investigators to con-
clude that the fault is segmented near the Gold-
en Gate. The Working Group on California
Earthquake Probabilities (1990) applied a uni-
form slip rate to the fault, and concluded that
segments with lower-co-seismic slip in 1906
should have more frequent events to fill the slip
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Fig.  10. Summary core logs and digital photographs of all sections of Noyo Channel core M9907-49PC. See
fig. 9 for location.
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deficit. Schwartz et al. (1998) argues that the
segmentation is simply a reflection that the off-
shore San Gregorio Fault (fig. 9) absorbs some
of the slip, and the slip-rate on the main San
Andreas is correspondingly reduced. They ar-
gue that the through-going rupture in 1906 was
not segmented, and further, that the penultimate
event, which occurred in the mid-1600’s, rup-
tured approximately the same distance, and had
a magnitude similar to the 1906 event.

11.  New results: Northern San Andreas 
turbidite record

During our 1999 Cascadia cruise, we collect-
ed two piston cores and one box core from Noyo
Channel, 150 km south of the southern end of
the Cascadia subduction zone. We did this both
to test the distance at which large ruptures would
generate turbidites, and to investigate whether
the Northern San Andreas had generated a tur-
bidite record of its own. We found that the Noyo
Channel cores near the offshore Northern San
Andreas Fault do show a good cyclic record of
turbidite beds (figs. 10 and 11a-d). In Core 49PC,
we find thirty-one turbidite beds above the Holo-
cene./.Pleistocene faunal and lithologic «datum» as
defined by Duncan et al. (1970), which Noyo
Canyon has a 14C age of 9000 years BP. 

Thus far, we have determined ages for 20
(of 38) events including the uppermost 5 events
from cores 49PC/TC and adjacent box core
50 B.C. using AMS methods. The uppermost

event returns a «modern» age, which we
interpret is likely the 1906 San Andreas earth-
quake. The penultimate event returns an inter-
cept age of A.D. 1664 (2 range 1505-1822).
The third event and fourth event are lumped
together, as there is no hemipelagic sediment
between them. The age of this possible couplet
event is A.D. 1524 (1445-1664). The couplet
could represent two ruptures with little time
between, an aftershock, or perhaps erosion at
the base of T3. The fifth event age is A.D. 1204
(1057-1319), and the sixth event age is A.D.
1049 (981-1188). These results are in relatively
good agreement with the onshore work to date
which indicates an age for the penultimate
event in the mid-1600’s (figs. 9 and 11a-d), the
most likely age for the third event of 

A.D. 1500-1600, and a fourth event A.D.
1300. We presently do not have the spatial sam-
pling needed to test for synchroneity of events
along the Northern San Andreas, and thus can-
not determine with confidence that the ob-
served turbidite record is entirely earthquake
generated. However, the good agreement in
number of events between the onshore and
offshore records suggests that either turbidite
triggers other than earthquakes appear not to
have added significantly to the turbidite
record along the northernmost San Andreas
margin during the last 2000 years, or the
similarity of records is a coincidence. 

With ages for 20 events, we can begin to
make some preliminary observations about
the turbidite event history. Figure 12b shows
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Fig.  11a-d. a) Top 93 cm of trigger core M9907-49TC and (b) the gamma-ray and magnetic susceptibility logs
(uncorrected) for the entire length (700 cm) of piston core M9907-49PC from Noyo Canyon. The characteristic
low gamma and high magnetic susceptibility of the turbidite sands is used to identify and correlate turbidite
events observed in the cores. c) A schematic core diagram of this piston core (49PC) is also shown. (Note cor-
relation is from the piston core to the trigger core, thus depths of events do not match exactly because the trig-
ger core has more compaction than the piston core). Of the 38 total events seen in the piston core, 31 are
Holocene age. The youngest 7 events seen in the trigger core (a) correlate with the youngest 7 events of the pis-
ton core (b and c). The white buttons on the trigger core and the red horizontal lines on the log identify turbidite
events. The recurrence times (c) of 216 and 234 years are calculated based on the age of T14 and the 1906 event.
The Holocene-Pleistocene boundary is here defined at the 1 to 1 ratio of radiolarians to forams (Duncan et al.
(1970); base of T31) is also apparent as a color change in the sediments, and is shown as the white curve near
the bottom of (c). d) Sample core from the 1999 R/V Melville Cascadia Turbidite Paleoseismicity Cruise. The
middle section of core shows the sharp color change from light grey to olive-green, characteristic of the
Pleistocene-Holocene boundary, and several thin, grey turbidite sands (labeled with T’s) separated by olive-
green hemipelagic mud. Note dropstones in the Pleistocene section. 
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the age of the core with depth, and shows a
good AMS age record, with no reversing
intervals in those dated so far. Figure 12a
shows the recurrence interval of events plot-
ted with depth. It is apparent from both plots
that both sedimentation rate and turbidite event
frequency have not been constant through the
Holocene. If the turbidite frequency is an earth-
quake proxy, then the repeat time for events
along the northernmost segment near Noyo
Canyon has decreased during the Holocene.
This may be due to a number of possible caus-
es: 1) the behavior of the fault has changed, for
example more slip shifting from other parts of
the plate boundary system to the main San
Andreas in the Late Holocene; or 2) the record
includes a non-earthquake climatic or sedimen-
tation record that has changed through the
Holocene. Climatic and sedimentation changes
would tend to favor a reduction in sedimenta-
tion during the Holocene as sea level rose and
separated canyons from their river sources, and
terrestrial erosion rates fell. We observe just the

opposite, with an increase in sedimentation rate
(based on hemipelagic sediment between tur-
bidites) that parallels the increase in turbidite
frequency. This observation tends to support a
change in fault behavior, however this issue
cannot be resolved with our single core.

12.  Discussion

As the Cascadia turbidite project has ma-
tured, we have learned a number of things about
the subtleties of using turbidites to precisely date
earthquakes. The most important is that regional
and temporal correlations are the strongest evi-
dence of earthquake triggering, and radiocarbon
event ages are much less so. This is not surpris-
ing, and is simply the result of the errors and
unknowns inherent in the dating process. Some
of these problems have been known to land pale-
oseismologists for years; others are unique to the
deep-sea environment. Our goals in radiocarbon
dating have not been to use the ages to demon-
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Turbidite event recurrence versus depth
Noyo Canyon core 49PC
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Fig.  12a,b. a) Event recurrence versus core depth for Noyo Canyon core 49PC. b) Event age versus depth in core
49PC. 2 errors for (b) shown by horizontal bars. Both plots show an increase in the interval between events down
core. We cannot determine the origin of these rate changes with our single Noyo core. The youngest interval in (b)
represents an average recurrence time of 216-234 (events 3 and 4 could be either 1 or 2 events). The good corre-
spondence between these events and the land record suggests that this interval is most probably a good proxy for
the Northern San Andreas earthquake record. 

Chris Goldfinger, C. Hans Nelson, Joel E. Johnson and the Shipboard Scientific Party

a b



strate earthquake origins, since the spatial and
temporal correlations do a much better job. The
purpose of the ages is to attempt a correlation
with the land record, and to begin to integrate
the two to cull more information about the earth-
quakes themselves in terms of the spatial and
temporal patterns of strain release, about which
we presently know very little. 

Correlating paleoseismic events using the
calibrated ages has long been the Achilles heel
of paleoseismology. Because the ages them-
selves include many sources or error that must
be propagated, it is sometimes difficult to get
even known events to correlate this way. Land
paleoseismologists have worked to overcome
this problem by using large quantities of ages to
be able to do statistical analyses of the «cloud»
of data associated with each event to make the
correlation more robust. With offshore data, we
are unable to use that tool at present because the
expense of collecting the original samples with
a large ship has thus far precluded collecting
enough sample volume to do more than one or
two dates from each event. The limitation is
imposed by the abundance of the planktonic
forams that we are dating, of which there are just
enough in one or two 4 diameter cores below
each event for one or two ages. What we do have
in the offshore record is a longer record at mul-
tiple locations. The tools that this provides offer
another way to arrive at a robust record. As men-
tioned above, pattern matching offers a way to
reveal a robust signal with less dependence on
the individual data points, which may be in error
for a variety of reasons. With multiple plots of
recurrence, turbidite thickness, hemipelagic
thickness, velocity, magnetic susceptibility etc.,
we can correlate events and do statistical analy-
sis on the correlation of the curves. This can then
be used in turn to identify outliers. 

In fig. 8 we also show the land data from
Willapa Bay (Atwater and Hemphill-Haley,
1997), a record from Lagoon Creek in Northern
California (near the Klamath River, Garrison-
Laney et al., 2002), Humboldt Bay (Clarke and
Carver, 1992), and Southern Oregon (Kelsey 
et al., 2002). These records show similarities to
the longer offshore record from Cascadia Basin,
but it is too early to comment extensively. Our
first complete core shows differences with

events T2 and T3 of the onshore record, which
we suspect may be due to the proximal envi-
ronment of core 12PC. Previously we and oth-
ers have noted a discrepancy between the aver-
age recurrence time seen in the marsh record,
and the average recurrence time from the tur-
bidite record. With a more complete record, we
think that this apparent discrepancy may simply
be an artifact of the different time spans being
reported. Our average reported repeat time of 

600 years is for the 13 post-Mazama events.
Now, with a complete record for one of our key
cores, we see that if we calculate recurrence for
the same time span that Atwater (1987) do, we
get a very similar result. At Willapa Bay,
Atwater and Hemphill-Haley (1997) report an
average repeat time of 533 years (7 events in
3500 years); Kelsey et al. (2002) report 529
years for the Sixes River in Southern Oregon (11
events in 5500 years) and Garrison-Laney et al.
(2002) report 608 years for Lagoon Creek. In our
record for the youngest Holocene interval, we
calculate an average recurrence of 490-550 years
for the last 3500-4000 years. Thus, it may be that
at least for the last 3000-4000 years, there is no
discrepancy, and thus it will be possible to corre-
late events one for one. This adds strength to both
the land and offshore records in that input from
independent upper plate earthquakes appear not
to be significant at least for the data analyzed
thus far for Washington, Oregon, and Northern
California as far south as Humboldt Bay.

The curves show a possible anomaly in the
3000-4000 year range between the records in
Southern Oregon, the coastal records to the
north and south, and the turbidite record. As did
Kelsey et al. (2002), we observe «extra» events
in the onshore records from Bradley Lake and
the Sixes River areas relative to both the onshore
record and our turbidite record. Our Rogue
Canyon cores directly sample the subduction
zone events at this latitude, and the record of tur-
bidites matches the other offshore records. The
extra events in Bradley Lake suggest that
Southern Oregon lakes and estuaries experience
earthquakes or some other phenomenon that
leaves similar records in addition to the region-
al great earthquake record. These could be up-
per plate events, smaller interplate events, or
may possibly have some other origin. 
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13.  Future directions

If we can successfully calibrate our ages
such that they are equivalent to event ages in the
coastal marshes, we can find matches and mis-
matches in the two records which will lead to
better understanding of both records. For exam-
ple, some of the turbidite events are clearly
larger than others, at least in terms of the thick-
ness of the turbidite. Do these events correlate
to larger onshore submergence, and or wider
spatial recognition on land? Are they a result of
a longer interval preceding that event, and thus
more accumulated sediment was triggered? Or
perhaps the longer interval ended in a larger
earthquake as well. Two independent data sets
allow a powerful analysis of these factors. 

Moving toward a marine turbidite record
that is both compatible with land records and
calibrated properly has some complications, but
resolution of these complications is possible,
and will increase the resolution and utility of
turbidites as earthquake proxies. Improvements
in dating fall into two categories: 1) arriving at
the best event age, and 2) calibrating the marine
ages to be compatible with the land record.
Arriving at the best event ages will involve re-
moving or attempting to at least bracket some of
the sources of error inherent in dating the events
thus far. These include age bias induced by sam-
pling below, not in each turbidite event. Since
we do not date microfossils in the turbidites
themselves because of potential reworking, we
must date them either above or below each
event. We date below the events because the
transition where the fine-grained turbidite tail
transitions to hemipelagic sedimentation is very
subtle at times, and inconsistent, while the base
of the turbidite is very distinct. The downside of
this is that there may be basal erosion. We
attempt to counter that by taking cores in non-
erosive depositional environments such as dis-
tal channel reaches and the lee sides of point
bars, but we are not always able to do that.
Planktonic forams are thus collected from 2-3
cm intervals of sediment below each turbidite.
The AMS age represents the midpoint of that
interval, which is older than the event, thus we
must correct for that. The correction however is
also not simple, since we need to determine the

local sedimentation rate (minus the turbidites
which are instantaneous) for each event, or at
least for an interval of time including that event.
Final determination of hemipelagic sedimenta-
tion rates and these corrections await a future
paper. 

We also would like to assess and, if possi-
ble, make some correction for basal erosion, or
at least identify events in cores that may have
had some unknown amount of erosion. We can
evaluate the ages that have suspected basal ero-
sion effects by comparing the maximum thick-
ness of hemipelagic sediment between each tur-
bidite event. First, we can compare the multiple
cores at each site to determine the maximum
hemipelagic thickness found at each site for
each of the turbidite events. Then we can com-
pare the maximum hemipelagic thickness
found at any site for each turbidite event (i.e.
T1, T2, etc.). If a sample for a radiocarbon age
for a specific turbidite event (i.e. T5) has been
taken at a site with less than the maximum hem-
ipelagic thickness observed nearby, we will
know that there has probably been basal erosion
by the turbidity current at that site for that
event.

The second category of corrections to make
the marine cores compatible with land marsh
and tree-ring ages involves the corrections ap-
plied to the radiocarbon ages themselves. Land
ages are corrected to a calibration curve that is
getting better with time as more data is used to
compute the curves. Marine ages have an addi-
tional complication in that the exchange of air
with the ocean is not instantaneous, even in sur-
face waters, and thus the water has an «age»
associated with it that must be removed. This is
done using paired shell and wood dates from
bays and estuaries that are incorporated into a
marine database. This database has regional
adjustments (Delta R) that are made to the basic
correction. In Cascadia, as in most regions,
there are a number of calibration points along
the coasts of Oregon, Washington, and Cali-
fornia in the literature. The question is whether
these values are valid for planktonic but pelag-
ic (not estuarine) forams we use for AMS dat-
ing. To a first order, we know that contempo-
rary values are not far off, since we get ages
within 50-100 years for the #1 event, which is
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known to be from the1700 A.D. earthquake
(assuming acceptance of the premise of region-
al spatial and temporal correlation). 

We are very fortunate that we have the 1700
earthquake because this known event offers 
the possibility of calibrating the Delta R correc-
tion. A related issue is that it is not known if 
the marine calibration corrections vary in time. 
We are again fortunate that we have not one,
but two events of well determined age, the A.D.
1700 earthquake, and the eruption of Mt. Ma-
zama. There was some delay between the erup-
tion and the deposition of the turbidite, which
makes this datum a bit less precise, however it
still offers a calibration point better than any
other available in the region. These two events
cover much of the Holocene, and spatially
include nearly all of Cascadia, offering a means
to develop a calibration correction that accounts
for both temporal and spatial variability to at
least a first order for the Holocene.  

14.  Conclusions

Results from Cascadia thus far support 
the conclusion that 18 large earthquakes may
have ruptured at least the northern 2/3 of the
plate boundary that we have examined. Synchro-
nous triggering of turbid flows in several Was-
hington channels has now been demonstrated
for 18 events spanning the entire Holocene.
Radiocarbon ages cannot prove or disprove
synchronicity for the 18 events observed in
other channels. While segmented rupture with
close temporal spacing cannot be ruled out, the
identical records found in the Rogue Channel
would have to be produced by a remarkably
consistent long-term rupture pattern, with es-
sentially no variability through 18 events over
9850 years. We are also encouraged by the
close agreement between preliminary data and
the onshore paleoseismic record along the
Northern San Andreas Fault. Preliminary re-
sults from Noyo Channel indicate the potential
for applying this method, utilizing additional
cores from other channels, to fully develop the
Holocene event-history of the Northern San
Andreas Fault System. Most importantly, by
carefully correlating the turbidite and land

records, it should be possible to construct reli-
able event records back 10.000 years for
Cascadia, the Northern San Andreas and other
fault systems. Doing so would allow investiga-
tions of clustering, triggering and other recur-
rence models, which are presently difficult to
test due to the relatively short instrumental,
historical and onshore-paleoseismic records.

Acknowledgements

We thank the officers and crew of the Scripps
Vessel R.V. Melville with special thanks to Bob
Wilson. We thank the members of the Scientific
Party: Drew Erickson, Mike Winkler, Pete Kalk,
Julia Pastor, Antonio Camarero, Clara Morri, Gita
Dunhill, Luis Ramos, Alex Raab, Nick Pisias 
Jr., Mark Pourmanoutscheri, David Van Rooij,
Lawrence Amy, and Churn-Chi «Charles» Liu.
This research was supported by National Science
Foundation grants EAR-0001023, EAR-017120
and EAR-9803081 and U.S. Geological Survey
National Earthquake Hazards Reduction Pro-
gram award 01HQGR0051, and Cooperative A-
greement 1434WR97AG00016. We also thank
John Adams and Phil Barnes for thoughtful re-
views that much improved the paper. 

REFERENCES

ADAMS, J. (1985): The potential for subduction zone earth-
quakes in the Puget Sound, Washington area, Eos,
Trans. Am. Geophys. Un., 66, 1071.

ADAMS, J. (1990): Paleoseismicity of the Cascadia subduc-
tion zone: evidence from turbidites off the Oregon-
Washington margin, Tectonics, 9, 569-583.

ANASTASAKIS, G.C. and D.J.W. PIPER (1991): The character
of seismo-turbidites in the S-1 sapropel, Zakinthos 
and Strofadhes basins, Greece, Sedimentology, 38,
717-733.

ARGUS, D.F. and R.G. GORDON (1991): Current Sierra
Nevada-North America motion from very long baseline
interferometry: implications for the kinematics of the
Western United States, Geology, 19,1085-1019.

ATWATER, B.F. (1987): Evidence for great Holocene earth-
quakes along the outer coast of Washington State,
Science, 236, 942-944.

ATWATER, B.F. (1992): Geologic evidence for earthquakes
during the past 2000 years along the Copalis River,
southern coastal Washington, J. Geophys. Res., 97,
1901-1919.

ATWATER, B.F. and E. HEMPHILL-HALEY (1997): Recurrence

1191

Deep-water turbidites as Holocene earthquake proxies: the Cascadia subduction zone and Northern San Andreas Fault systems



intervals for great earthquakes of the past 3500 years at
Northeastern Willapa Bay, Washington, U.S. Geol.
Surv. Prof. Pap. 1576, pp. 108.

ATWATER, B.F., A. NELSON, J.J. CLAGUE, G.A. CARVER, D.K.
YAMAGUCHI, P.T. BOBROWSKY, J. BOURGEOIS, M.E.
DARIENZO, W.C. GRANT, E. HEMPHILL-HALEY, H.M.
KELSEY, G.C. JACOBY, S.P. NISHENKO, S.P. PALMER,
C.D. PETERSON and M.A REINHART (1995): Summary
of coastal geologic evidence for past great earthquakes
at the Cascadia subduction zone, Earthquake Spectra,
11, 1-18.

BROWN, R.D. (1995): 1906 Surface faulting on the San
Andreas Fault near Point Delgada, California, Bull.
Seismol. Soc. Am., 85 (1), 100-110.

CASTILLO, D.A. and W.L. ELLSWORTH (1993): Seismote-
ctonics of the San Andreas Fault System between
Point Arena and Cape Mendocino in Northern
California: implications for the development and evo-
lution of a young transform, J. Geophys. Res., 98,
6543-6560.

CLAGUE, J.J. (1997): Evidence for large earthquakes at the
Cascadia subduction zone, Rev. Geophys., 35, 439-460.

CLARKE, S.H. and G.A. CARVER (1992): Breadth of inter-
plate coupling in the Southern Cascadia subduction
zone: implication for earthquake magnitudes, Geol.
Soc. Am. Abstr. Prog., 24, pp. 15.

DARIENZO, M.E. and C.D. PETERSON( 1990): Episodic tec-
tonic subsidence of Late Holocene salt marshes,
Northern Oregon Central Cascadia margin, Tectonics,
9, 1-22.

DUNCAN, J.R., G.A. FOWLER and L.D. KULM (1970):
Planktonic Foraminiferan-Radiolarian ratios and
Holocene-Late Pleistocene deep-sea stratigraphy off
Oregon, Geol. Soc. Am. Bull., 81, 561-566.

FIELD, M.E. (1984): The Submarine Landslide of 1980 off
Northern California, U.S. Geol. Surv. Circ., 938, 65-72.

FUMAL T., G.F. HEINGARTNER and D.P. SCHWARTZ (1999):
Timing and slip of large earthquakes on the San
Andreas Fault, Santa Cruz Mountains, California,
Geol. Soc. Am. Abstr. Prog., 31, A-56.

GARFIELD, N., T.A. RAGO, K.J. SCHNEBELE and C.A.
COLLINS (1994): Evidence of a turbidity current in
Monterey Submarine Canyon associated with the 1989
Loma Prieta earthquake, Cont. Shelf. Res., 14 (6),
673-686.

GARRISON-LANEY, C.E., H.F. ABRAMSON and G.A. CARVER

(2002): Late Holocene tsunamis near the southern end
of the Cascadia subduction zone, Seismol. Res. Lett.

GOLDFINGER, C. and C.H. NELSON (1999): Holocene recurrence
of Cascadia great earthquakes based on the Turbidite event
record, Eos, Trans. Am. Geophys. Un., 80, 1024.

GOLDFINGER, C., C.H. NELSON and J. JOHNSON (2003): Ho-
locene earthquake records from the Cascadia subduc-
tion zone and Northern San Andreas Fault based on
precise dating of offshore turbidites, Annu. Rev.
Geophys., 31, 555-577.

GORSLINE, D.S., T. DE DIEGO and E.H. NAVA-SANCHEZ

(2000): Seismically triggered turbidites in small mar-
gin basins: Alfonso Basin, Western Gulf of California
and Santa Monica Basin, California Borderland,
Sediment. Geol., 135, 21-35.

GRANTZ, A., R.L. PHILLIPS, M.W. MULLEN, S.W. STARRATT,
G.A. JONES, S.S. NAIDU and B.P. FINNEY (1996): Character,

paleoenvironment, rate of accumulation, and evidence for
seismic triggering of Holocene turbidites, Canada abyssal
plain, Arctic Ocean, Mar. Geol., 133, 51-73.

GRIGGS G.B. and L.D. KULM (1970): Sedimentation in
Cascadia. Deep-Sea Channel, Geol. Soc. Am. Bull., 81,
1361-1384.

GRIGGS, G.B., A.G. CAREY and L.D. KULM (1969): Deep-
sea sedimentation and sediment-fauna Interaction in
Cascadia Channel and on Cascadia Abyssal Plain,
Deep-Sea Res., 16, 157-170.

HEMPHILL-HALEY, E. (1995): Diatom evidence for earth-
quake-induced subsidence and tsunami 300 years age
in southern coastal Washington, Geol. Soc. Am. Bull.,
107, 367-378.

HEMPHILL-HALEY, E., A.R. NELSON, H.M. KELSEY and R.C.
WITTER (2000): Displaced marine diatoms in a coastal
fresh-water lake: microfossil evidence for Holocene
tsunamis on the South-Central Oregon coast, in
Proceedings of the Geological Society of America
Penrose Conference on Great Cascadia Earthquake
Tricentennial (Or. Dept. of Geol. Min. Ind.), edited by
J. CLAGUE, B. ATWATER, K. WANG, M.M. WAND and
I. WONG, p. 53.

HUTCHINSON, I., J.J. CLAGUE, P.T. BOBROWSKY and H.F.L.
WILLIAMS (2000): Investigations of Cascadia paleo-
seismicity in southwestern B.C. and northernmost
Washington State, in Proceedings of the Geological
Society of America Penrose Conference on Great
Cascadia Earthquake Tricentennial (Or. Dept. of Geol.
Min. Ind.), edited by J. CLAGUE, B. ATWATER, K. WANG,
M.M. WAND and I. WONG, p. 61.

INOUCHI, Y., Y. KINUGASA, F. KUMON, S. NAKANO, S.
YASUMATSU and T. SHIKI (1996): Turbidites as records
of intense palaeoearthquakes in Lake Biwa, Japan,
Sediment. Geol., 104, 117-125.

JACOBY, G.C., D.E. BUNKER and B.E. BENSON (1997): Tree-
ring evidence for an A.D. 1700 Cascadia earthquake in
Washington and Northern Oregon, Geology, 25 (11),
999-1002.

KARLIN, R.C. and S.E.B. ABELLA (1992): Paleoearthquakes
in the Puget Sound region recorded in sediments from
Lake Washington, U.S.A., Science, 258, 1617-1620.

KASTENS, K.A. (1984): Earthquakes as a triggering mecha-
nism for debris flows and turbidites on the Calabrian
Ridge, Mar. Geol., 55, 13-33.

KELSEY, H.M., R.C. WITTER and E. HEMPHILL-HALEY

(1998): Response of a small Oregon estuary to coseis-
mic subsidence and postseismic uplift in the past 300
years, Geology, 26.

KELSEY, H.M., R.C. WITTER and E. HEMPHILL-HALEY

(2002): Plate-boundary earthquakes and tsunamis of
the past 5500 years, Sixes River estuary, Southern
Oregon, Geol. Soc. Am. Bull., 114 (3), 298-314.

LAWSON, A.C. (1908): The California earthquake of April
18, 1906, Rept. State Earthquake Invest. Comm. (Car-
negie Institution, Washington D.C.), vols. I and II.

MCLAUGHLIN, R.J., D.H. SORG, J.L. MORTON, J.N. BAT-
CHELDER, H.N. HEROPOULOS, H.N. OHLIN and M.B.
NORMAN (1979): Timing of sulfide mineralization and
elimination of the San Andreas Fault at Point Delgada,
California, Eos, Trans. Am. Geophys. Union, 60,
p. 883.

MCLAUGHLIN, R.J., K.R. LAJOIE, D.H. SORG, S.D.

1192

Chris Goldfinger, C. Hans Nelson, Joel E. Johnson and the Shipboard Scientific Party



MORRISON and J.A. WOLFE (1983): Tectonic uplift of a
middle Wisconsin marine platform near the Mendocino
triple junction, California, Geology, 11, 35-39.

NAKAJIMA, T. and Y. KANAI (2000): Sedimentary features of
seismoturbidites triggered by the 1983 and older his-
torical earthquakes in the eastern margin of the Japan
Sea, Sediment. Geol., 135, 1-19.

NELSON, A.R., B.F. ATWATER, P.T. BROBOWSKI, L.A.
BRADLEY, J.J. CLAGUE, G. CARVE, M.E. DARIENZO,
W.C. GRANT, H.W. KRUEGER, R. SPARKS, T.W.
STAFFORD and M. STUIVER (1995): Radiocarbon evi-
dence for extensive plate-boundary rupture about 300
years ago at the Cascadia subduction zone, Nature,
378, 371-374.

NELSON, A.R., H.M. KELSEY, E. HEMPHILL-HALEY and R.C.
WITTER (2000): Oxcal analyses and varve-based sedi-
mentation rates constrain the times of C14 dated tsuna-
mis in Southern Oregon, in Proceedings of the Geolo-
gical Society of America Penrose Conference on Great
Cascadia Earthquake Tricentennial (Or. Dept. of Geol.
Min. Ind.), edited by J. CLAGUE, B. ATWATER, K. WANG,
M.M. WAND and I. WONG, 71-72.

NELSON, C.H. (1968): Marine geology of Astoria deep-sea
fan, Ph.D. Thesis, Oregon State University, Corvallis,
p. 289.

NELSON, C.H. and C. GOLDFINGER (1999): Turbidite event
stratigraphy and implications for Cascadia basin pa-
leoseismicity, Eos, Trans. Am. Geophys. Un., 80,
733-734.

NELSON, C.H., B. SAVOYE, J.P. REHAULT and C. ESCUTIA

(1995): Interfingering of Western Corsican margin
aprons with the Var Fan lobe and an apparent Late Qua-
ternary Corsican paleoseismic event, in International
Association of Sedimentologists 16th Regional Euro-
pean Meeting, Aix-les-Bains, Savoie France, Abstracts
volume, p. 113. 

NELSON, C.H., C. GOLDFINGER, J.E. JOHNSON and G.
DUNHILL (2003): Paleoseismic history of the Cascadia
subduction zone derived from turbidite stratigraphy,
U.S. Geol. Surv. Prof. Pap. (in review).

NIEMI, T.M. and N.T. HALL (1992): Late Holocene slip rate
and recurrence of great earthquakes on the San Andreas
Fault in Northern California, Geology, 20, 195-198.

NIEMI, T.M. and Z. BEN-AVRAHAM (1994): Evidence for
Jericho earthquakes from slumped sediments of 
the Jordan River delta in the Dead Sea, Geology, 22,
395-398.

NIEMI, T. and H. ZHANG (2000): Paleoseismology of the
Northern San Andreas Fault at the Vendanta marsh site,
Marin County, CA, in 3rd Conference on Tectonic
Problem of the San Andreas Fault System, Stanford
University, California (abstract).

OLLERHEAD, J., D.J. HUNTLEY, A.R. NELSON and H.M.
KELSEY (2001): Optical dating of tsunami-laid sand
from an Oregon coastal lake, Quat. Sci. Rev., 20 (18),
1915-1926.

OPPENHEIMER, D., G. BEROZA, G. CARVER, L. DENGLER, J.
EATON, L. GEE, F. GONZALEZ, A. JAYKO, W.H. LI, M.
LISOWSKI, M. MAGEE, G. MARSHALL, M. MURRAY, R.
MCPHERSON, B. ROMANOWICZ, K. SATAKE, R. SIMPSON,
P. SOMERVILLE, R. STEIN and D.VALENTINE (1993): The
Cape Mendocino, California, earthquakes of April 1992:
subduction at the triple junction, Science, 261, 433-438.

PILKEY, O.H. (1988): Basin plains; giant sedimentation
events, Geol. Soc. Am. Spec. Pap., 229, 93-99.

PRENTICE, C.S. (1989): Earthquake geology of the Northern
San Andreas Fault near Point Arena, California, Ph.D.
Thesis, California Inst. Tech., Pasadena, pp. 252. 

PRENTICE, C.S. and D.J. PONTI (1997): Coseismic deforma-
tion of the Wrights tunnel during the 1906 San
Francisco earthquake: a key to understanding 1906
fault slip and 1989 surface ruptures in the Southern
Santa Cruz Mountains, California, J. Geophys. Res.,
102, 635-648.

PRENTICE, C.S., D.J. MERRITTS, E.C. BEUTNER, P. BODIN, A.
SCHILL and J.R. MULLER (1999): Northern San Andreas
Fault near Shelter Cove, California, Geol. Soc. Am.
Bull., 111, 512-523.

PRENTICE, C., R. LANGRIDGE and D. MERRITTS (2000):
Paleoseismic and Quaternary tectonic studies of the
San Andreas Fault from Shelter cove to Fort Ross, in
3rd Conference Tectonic Problems of the San Andreas
Fault System, edited by R.L. KOVACH and G. BOKEL-
MANN, Stanford University, California.

SATAKE, K., K. SHIMAZAKI, Y. TSUJI and K. UEDA (1996):
Time and size of a giant earthquake in Cascadia
inferred from Japanese tsunami records of January,
1700, Nature, 379, 246-249.

SAUBER, J.W., W. THATCHER, S.C. SOLOMON and M.
LISOWSKI (1994): Geodetic slip-rate for the Eastern
California shear zone and the recurrence time for
Mojave desert earthquakes, Nature, 367, 264-266.

SCHWARTZ, D.P., D. PANTOSTI, K. OKUMURA, T.J. POWERS

and J.C. HAMILTON (1998): Paleoseismic investiga-
tions in the Santa Cruz mountains, California: impli-
cations for recurrence of large-magnitude earthquakes
on the San Andreas Fault, J. Geophys. Res., 103
(8),17,985-18,001.

SEGALL, P. and M. LISOWSKI (1990): Surface displacement
in the 1906 and 1989 Loma Prieta earthquakes,
Science, 250, 1241-1244.

SHIKI, T., F. KUMON, Y. INOUCHI, Y. KONTANI, T.
SAKAMOTO, M. TATEISHI, H. MATSUBARA and K.
FUKUYAMA (2000) Sedimentary features of the seis-
mo-turbidites, Lake Biwa, Japan, Sediment. Geol.,
135, 37-50.

SOUTHON, J.R., D.E. NELSON and J.S. VOGEL (1990): A
record of past ocean-atmosphere radiocarbon differ-
ences from the Northeast Pacific, Paleoceanography, 5
(2), 197-206. 

STEIN, R.S., G.C.P. KING and J. LIN (1992): Change in fail-
ure stress on the Southern San Andreas Fault System
caused by the 1992 M 7.4 Landers earthquake, Science,
199, 1328-1332.

STUVIER, M. and T.F. BRAZIUNAS (1993): Modeling atmos-
pheric 14C influences and 14C ages of marine samples
to 10 000 B.C., Radiocarbon, 35, 137-189.

THATCHER, W., G. MARSHALL and M. LISOWSKI (1997):
Resolution of fault slip along the 470 km long rup-
ture of the great 1906 San Francisco earthquake, J.
Geophys. Res., 102, 5353-5367.

THOMSON, J. and P.P.E. WEAVER (1994): An AMS radio-
carbon method to determine the emplacement time
of recent deep-sea turbidites, Sediment. Geol., 89,
1-7.

WARD, S.N. and S.D.B. GOES (1993): How regularly do earth-

1193

Deep-water turbidites as Holocene earthquake proxies: the Cascadia subduction zone and Northern San Andreas Fault systems



quakes recur? A synthetic seismicity model for the San
Andreas Fault, Geophys. Res. Lett., 20 (19), 2131-2134.

WORKING GROUP ON NORTHERN CALIFORNIA EARTHQUAKE

POTENTIAL (1990): Probabilities of large earthquakes in
the San Francisco Bay region, California, U.S. Geol.
Surv. Circ. 1053, pp. 53. 

YAMAGUCHI, D.K., B.F., ATWATER, D.E. BUNKER, B.E.
BENSON and M.S. REID (1997): Tree-ring dating the
1700 Cascadia earthquake, Nature, 389, 922-923.

ZDANOWICZ, C.M., G.A. ZIELINSKI and M.S. GERMANI (1999):
Mount Mazama eruption: Calendrical age verified and
atmospheric impact assessed, Geology, 27, 621-624.

1194

Chris Goldfinger, C. Hans Nelson, Joel E. Johnson and the Shipboard Scientific Party


	University of New Hampshire
	University of New Hampshire Scholars' Repository
	10-1-2003

	Deep-water turbidites as Holocene earthquake proxies: the Cascadia subduction zone and Northern San Andreas Fault systems
	Chris Goldfinger
	C. Hans Nelson
	Joel E. Johnson
	Recommended Citation


	articolo goldfinger.pdf

