339 research outputs found

    Le malattie respiratorie nell'ottica di genere

    Get PDF
    Introduzione I. Ambrosino, E. Barbagelata Differenze di genere nello sviluppo embrionale, nell’anatomia, nella fisiologia e nella patologia dell’apparato respiratorio E. Barbagelata, I. Ambrosino Le principali malattie respiratorie in ottica di genere dall’epidemiologia alla diagnosi e alla terapia: asma T. Ciarambino, O. Para, I. Ronga Le principali malattie respiratorie in ottica di genere dall’epidemiologia alla diagnosi e alla terapia: broncopneumopatia cronica ostruttiva S. Mangiacapra Le principali malattie respiratorie in ottica di genere dall’epidemiologia alla diagnosi e alla terapia: polmoniti T.M. Attardo Le principali malattie respiratorie in ottica di genere dall’epidemiologia alla diagnosi e alla terapia: tromboembolia polmonare M. Porru, P. Pitto Le principali malattie respiratorie in ottica di genere dall’epidemiologia alla diagnosi e alla terapia: versamento pleurico C. Zaninetti, C. Tana Come una società scientifica può diffondere la cultura di genere? P. Gnerre, C. Politi, A. Fontanell

    Minimal Absent Words in Four Human Genome Assemblies

    Get PDF
    Minimal absent words have been computed in genomes of organisms from all domains of life. Here, we aim to contribute to the catalogue of human genomic variation by investigating the variation in number and content of minimal absent words within a species, using four human genome assemblies. We compare the reference human genome GRCh37 assembly, the HuRef assembly of the genome of Craig Venter, the NA12878 assembly from cell line GM12878, and the YH assembly of the genome of a Han Chinese individual. We find the variation in number and content of minimal absent words between assemblies more significant for large and very large minimal absent words, where the biases of sequencing and assembly methodologies become more pronounced. Moreover, we find generally greater similarity between the human genome assemblies sequenced with capillary-based technologies (GRCh37 and HuRef) than between the human genome assemblies sequenced with massively parallel technologies (NA12878 and YH). Finally, as expected, we find the overall variation in number and content of minimal absent words within a species to be generally smaller than the variation between species

    The Cyprinodon variegatus genome reveals gene expression changes underlying differences in skull morphology among closely related species

    Get PDF
    Genes in durophage intersection set at 15 dpf. This is a comma separated table of the genes in the 15 dpf durophage intersection set. Given are edgeR results for each pairwise comparison. Columns indicating whether a gene is included in the intersection set at a threshold of 1.5 or 2 fold are provided. (CSV 13 kb

    Analysis of Chimpanzee History Based on Genome Sequence Alignments

    Get PDF
    Population geneticists often study small numbers of carefully chosen loci, but it has become possible to obtain orders of magnitude for more data from overlaps of genome sequences. Here, we generate tens of millions of base pairs of multiple sequence alignments from combinations of three western chimpanzees, three central chimpanzees, an eastern chimpanzee, a bonobo, a human, an orangutan, and a macaque. Analysis provides a more precise understanding of demographic history than was previously available. We show that bonobos and common chimpanzees were separated ∼1,290,000 years ago, western and other common chimpanzees ∼510,000 years ago, and eastern and central chimpanzees at least 50,000 years ago. We infer that the central chimpanzee population size increased by at least a factor of 4 since its separation from western chimpanzees, while the western chimpanzee effective population size decreased. Surprisingly, in about one percent of the genome, the genetic relationships between humans, chimpanzees, and bonobos appear to be different from the species relationships. We used PCR-based resequencing to confirm 11 regions where chimpanzees and bonobos are not most closely related. Study of such loci should provide information about the period of time 5–7 million years ago when the ancestors of humans separated from those of the chimpanzees

    Generation of Long Insert Pairs Using a Cre-LoxP Inverse PCR Approach

    Get PDF
    Large insert mate pair reads have a major impact on the overall success of de novo assembly and the discovery of inherited and acquired structural variants. The positional information of mate pair reads generally improves genome assembly by resolving repeat elements and/or ordering contigs. Currently available methods for building such libraries have one or more of limitations, such as relatively small insert size; unable to distinguish the junction of two ends; and/or low throughput. We developed a new approach, Cre-LoxP Inverse PCR Paired-End (CLIP-PE), which exploits the advantages of (1) Cre-LoxP recombination system to efficiently circularize large DNA fragments, (2) inverse PCR to enrich for the desired products that contain both ends of the large DNA fragments, and (3) the use of restriction enzymes to introduce a recognizable junction site between ligated fragment ends and to improve the self-ligation efficiency. We have successfully created CLIP-PE libraries up to 22 kb that are rich in informative read pairs and low in small fragment background. These libraries have demonstrated the ability to improve genome assemblies. The CLIP-PE methodology can be implemented with existing and future next-generation sequencing platforms

    Efficient counting of k-mers in DNA sequences using a bloom filter

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Counting <it>k</it>-mers (substrings of length <it>k </it>in DNA sequence data) is an essential component of many methods in bioinformatics, including for genome and transcriptome assembly, for metagenomic sequencing, and for error correction of sequence reads. Although simple in principle, counting <it>k</it>-mers in large modern sequence data sets can easily overwhelm the memory capacity of standard computers. In current data sets, a large fraction-often more than 50%-of the storage capacity may be spent on storing <it>k</it>-mers that contain sequencing errors and which are typically observed only a single time in the data. These singleton <it>k</it>-mers are uninformative for many algorithms without some kind of error correction.</p> <p>Results</p> <p>We present a new method that identifies all the <it>k</it>-mers that occur more than once in a DNA sequence data set. Our method does this using a Bloom filter, a probabilistic data structure that stores all the observed <it>k</it>-mers implicitly in memory with greatly reduced memory requirements. We then make a second sweep through the data to provide exact counts of all nonunique <it>k</it>-mers. For example data sets, we report up to 50% savings in memory usage compared to current software, with modest costs in computational speed. This approach may reduce memory requirements for any algorithm that starts by counting <it>k</it>-mers in sequence data with errors.</p> <p>Conclusions</p> <p>A reference implementation for this methodology, BFCounter, is written in C++ and is GPL licensed. It is available for free download at <url>http://pritch.bsd.uchicago.edu/bfcounter.html</url></p
    • …
    corecore