190 research outputs found

    Characterisation of a stable laboratory co-culture of acidophilic nanoorganisms

    Get PDF
    This study describes the laboratory cultivation of ARMAN (Archaeal Richmond Mine Acidophilic Nanoorganisms). After 2.5 years of successive transfers in an anoxic medium containing ferric sulfate as an electron acceptor, a consortium was attained that is comprised of two members of the order Thermoplasmatales, a member of a proposed ARMAN group, as well as a fungus. The 16S rRNA identity of one archaeon is only 91.6% compared to the most closely related isolate Thermogymnomonas acidicola. Hence, this organism is the first member of a new genus. The enrichment culture is dominated by this microorganism and the ARMAN. The third archaeon in the community seems to be present in minor quantities and has a 100% 16S rRNA identity to the recently isolated Cuniculiplasma divulgatum. The enriched ARMAN species is most probably incapable of sugar metabolism because the key genes for sugar catabolism and anabolism could not be identified in the metagenome. Metatranscriptomic analysis suggests that the TCA cycle funneled with amino acids is the main metabolic pathway used by the archaea of the community. Microscopic analysis revealed that growth of the ARMAN is supported by the formation of cell aggregates. These might enable feeding of the ARMAN by or on other community members

    Pulmonary availability of isotretinoin in rats after inhalation of a powder aerosol

    Get PDF
    Repeated oral administration of chemopreventive retinoids such as isotretinoin over extended periods of time is associated with intolerable systemic toxicity. Here isotretinoin was formulated as a powder aerosol, and its delivery to the lungs of rats was studied with the aim to explore the possibility of minimizing adverse effects associated with its oral administration. Rats received isotretinoin orally (0.5, 1 or 10 mg kg–1) or by inhalation (theoretical dose ~1 or ~10 mg kg–1) in a nose-only inhalation chamber. Isotretinoin was quantitated by high-pressure liquid chromatography in plasma and lung tissue. The ratios of mean area of concentration-vs-time curve (AUC) values in the lungs over mean AUCs in the plasma for isotretinoin following single or repeated aerosol exposure surpassed those determined for the oral route by factors of between two (single low-dose) and five (single high-dose). Similarly, the equivalent ratios for the maximal peak concentrations in lungs and plasma obtained after aerosol exposure consistently exceeded those seen after oral administration, suggesting that lungs were exposed to higher isotretinoin concentrations after aerosol inhalation than after oral administration of similar doses. Repeated high doses of isotretinoin by inhalation resulted in moderate loss of body weight, but microscopic investigation of ten tissues including lung and oesophagus did not detect any significant aerosol-induced damage. The results suggest that administration of isotretinoin via powder aerosol inhalation is probably superior to its application via the oral route in terms of achieving efficacious drug concentrations in the lungs. © 2000 Cancer Research Campaig

    Critical research gaps and translational priorities for the successful prevention and treatment of breast cancer

    Get PDF
    INTRODUCTION Breast cancer remains a significant scientific, clinical and societal challenge. This gap analysis has reviewed and critically assessed enduring issues and new challenges emerging from recent research, and proposes strategies for translating solutions into practice. METHODS More than 100 internationally recognised specialist breast cancer scientists, clinicians and healthcare professionals collaborated to address nine thematic areas: genetics, epigenetics and epidemiology; molecular pathology and cell biology; hormonal influences and endocrine therapy; imaging, detection and screening; current/novel therapies and biomarkers; drug resistance; metastasis, angiogenesis, circulating tumour cells, cancer 'stem' cells; risk and prevention; living with and managing breast cancer and its treatment. The groups developed summary papers through an iterative process which, following further appraisal from experts and patients, were melded into this summary account. RESULTS The 10 major gaps identified were: (1) understanding the functions and contextual interactions of genetic and epigenetic changes in normal breast development and during malignant transformation; (2) how to implement sustainable lifestyle changes (diet, exercise and weight) and chemopreventive strategies; (3) the need for tailored screening approaches including clinically actionable tests; (4) enhancing knowledge of molecular drivers behind breast cancer subtypes, progression and metastasis; (5) understanding the molecular mechanisms of tumour heterogeneity, dormancy, de novo or acquired resistance and how to target key nodes in these dynamic processes; (6) developing validated markers for chemosensitivity and radiosensitivity; (7) understanding the optimal duration, sequencing and rational combinations of treatment for improved personalised therapy; (8) validating multimodality imaging biomarkers for minimally invasive diagnosis and monitoring of responses in primary and metastatic disease; (9) developing interventions and support to improve the survivorship experience; (10) a continuing need for clinical material for translational research derived from normal breast, blood, primary, relapsed, metastatic and drug-resistant cancers with expert bioinformatics support to maximise its utility. The proposed infrastructural enablers include enhanced resources to support clinically relevant in vitro and in vivo tumour models; improved access to appropriate, fully annotated clinical samples; extended biomarker discovery, validation and standardisation; and facilitated cross-discipline working. CONCLUSIONS With resources to conduct further high-quality targeted research focusing on the gaps identified, increased knowledge translating into improved clinical care should be achievable within five years

    Cancer chemoprevention: lessons learned and future directions

    Get PDF
    The concept of delaying or preventing epithelial transformation remains a viable and attainable goal for the future. Drug-based strategies for chemoprevention of the future may predominantly rely upon targeted therapies with tolerable but defined toxicities for treatment of individuals diagnosed with intraepithelial neoplasias. Foods, diet manipulation strategies, or nutraceuticals may be more appropriate to delay or prevent carcinogenesis progression in healthy populations with genetic or epidemiologic evidence of risk for future transformation

    Age-related difference in susceptibility of ApcMin/+ mice towards the chemopreventive efficacy of dietary aspirin and curcumin

    Get PDF
    The nonsteroidal anti-inflammatory drug aspirin and the spice curcumin retard adenoma formation when administered long-term to ApcMin/+ mice, a model of human familial adenomatous polyposis coli. Both agents interfere with cyclooxygenase activity. When aspirin is administered to ApcMin/+ mice only postweaning, but not before, it is inefficacious, while curcumin given postweaning is active. Here the hypothesis was tested that dietary aspirin (0.05%) or curcumin (0.2%) prevent or delay adenoma formation in offsprings when administered to ApcMin/+ mothers and up to the end of weaning, but not afterwards. Whereas curcumin was without effect when administered in this way, aspirin reduced numbers of intestinal adenomas by 21%. When aspirin given up to the end of weaning was combined with curcumin administered from the end of weaning for the rest of the animals' lifetime, intestinal adenoma numbers were reduced by 38%. The combination was not superior to intervention postweaning with curcumin alone. These results show that aspirin exerts chemopreventive activity in the ApcMin/+ mouse during tumour initiation/early promotion, while curcumin is efficacious when given at a later stage of carcinogenic progression. Thus, the results suggest that in this mouse model aspirin and curcumin act during different ‘windows’ of neoplastic development
    corecore