321 research outputs found

    Abundance and stomach content analysis of threadfin shad in Lake Mead, Nevada: Do invasive quagga mussels affect this prey species?

    Full text link
    Lake Mead, Nevada is the largest reservoir by volume in the United States, as well as a popular sport fishing destination. In January 2007, the invasive quagga mussel Dreissena rostriformis bugensis (Andrusov, 1897) was discovered in the reservoir and concerns began to arise about potential alterations to the aquatic environment. The Lake Mead sport fishery is reliant on the sustainability of prey species like the threadfin shad [Dorosoma petenense (GĂŒnther, 1867)]. This study examined 20-year trends in historic abundance of the threadfin shad, before, and shortly after, the discovery of quagga mussels in the system. Larval shad trawl data collected in Las Vegas Bay and Overton Arm portions of Lake Mead were analyzed in the present study. Two-way analysis of variances showed that the abundance of this prey fish has not changed following quagga mussel invasion (P \u3e 0.05). Post-quagga mussel discovery collections of adult threadfin shad from Las Vegas Bay ranged from 113 to 212 mm total length (TL) (mean = 184 mm; n = 170). Shad from Overton Arm ranged from 131 to 197 mm TL (mean = 150 mm; n = 27). Stomach contents were analyzed. The proportion of cladocerans in stomach contents differed significantly from spring to winter in Las Vegas Bay (P = 0.008); whereas the proportion of copepods did not show statistically relevant differences regarding seasonality (P = 0.562). Initial trends in lower trophic level dynamics in response to quagga mussel invasion has yet to reveal significant effects in Las Vegas Bay or Overton Arm. Long-term monitoring on threadfin shad is needed to evaluate potential impacts from invasive quagga mussels in Lake Mead

    High-risk human papillomavirus (HPV) screening and detection in normal, healthy patient saliva samples: a pilot cluster randomized study

    Get PDF
    Background: The human papillomaviruses (HPV) are a large family of non-enveloped DNA viruses, mainly associated with cervical cancers. Recent epidemiologic evidence has suggested that HPV may be an independent risk factor for oropharyngeal cancers. Evidence now suggests HPV may modulate the malignancy process in some tobacco- and alcohol-induced oropharynx tumors, but might also be the primary oncogenic factor for inducing carcinogenesis among some non-smokers. More evidence, however, is needed regarding oral HPV prevalence among healthy adults to estimate risk. The goal of this study was to perform an HPV screening of normal healthy adults to assess oral HPV prevalence. Methods: Healthy adult patients at a US dental school were selected to participate in this pilot study. DNA was isolated from saliva samples and screened for high-risk HPV strains HPV16 and HPV18 and further processed using qPCR for quantification and to confirm analytical sensitivity and specificity. Results: Chi-square analysis revealed the patient sample was representative of the general clinic population with respect to gender, race and age (p \u3c 0.05). Four patient samples were found to harbor HPV16 DNA, representing 2.6% of the total (n = 151). Three of the four HPV16-positive samples were from patients under 65 years of age and all four were female and Hispanic (non-White). No samples tested positive for HPV18. Conclusions: The successful recruitment and screening of healthy adult patients revealed HPV16, but not HPV18, was present in a small subset. These results provide new information about oral HPV status, which may help to contextualize results from other studies that demonstrate oral cancer rates have risen in the US among both females and minorities and in some geographic areas that are not solely explained by rates of tobacco and alcohol use. The results of this study may be of significant value to further our understanding of oral health and disease risk, as well as to help design future studies exploring the role of other factors that influence oral HPV exposure, as well as the short- and long-term consequences of oral HPV infection

    Functional Electrical Stimulation Leads to Increased Volume of the Aged Thyroarytenoid Muscle.

    Get PDF
    OBJECTIVES/HYPOTHESIS: To reverse sarcopenia and increase the volumes of atrophied laryngeal muscles by functional electrical stimulation (FES) using a minimal invasive surgical procedure in an aged ovine model. STUDY DESIGN: Prospective animal study. METHODS: A stimulation electrode was placed unilaterally near the terminal adduction branch of the recurrent laryngeal nerve (RLN) adjacent to the right cricothyroid joint. The electrode was connected to an implant located subcutaneously at the neck region. Predesigned training patterns were automatically delivered by a bidirectional radio frequency link using a programming device and were repeated automatically by the implant every other day over 11 weeks in the awake animal. Outcome parameters comprised volumetric measurements based on three-dimensional reconstructions of the entire thyroarytenoid muscle (TAM), as well as gene expression analyses. RESULTS: We found significant increases of the volumes of the stimulated TAM of 11% and the TAM diameter at the midmembranous parts of the vocal folds of nearly 40%. Based on gene expression, we did not detect a shift of muscle fiber composition. CONCLUSIONS: FES of the terminal branches of the RLN is a secure and effective way to reverse the effects of age-related TAM atrophy and to increase volumes of atrophied muscles. LEVEL OF EVIDENCE: NA Laryngoscope, 2018

    Rupture by damage accumulation in rocks

    Get PDF
    The deformation of rocks is associated with microcracks nucleation and propagation, i.e. damage. The accumulation of damage and its spatial localization lead to the creation of a macroscale discontinuity, so-called "fault" in geological terms, and to the failure of the material, i.e. a dramatic decrease of the mechanical properties as strength and modulus. The damage process can be studied both statically by direct observation of thin sections and dynamically by recording acoustic waves emitted by crack propagation (acoustic emission). Here we first review such observations concerning geological objects over scales ranging from the laboratory sample scale (dm) to seismically active faults (km), including cliffs and rock masses (Dm, hm). These observations reveal complex patterns in both space (fractal properties of damage structures as roughness and gouge), time (clustering, particular trends when the failure approaches) and energy domains (power-law distributions of energy release bursts). We use a numerical model based on progressive damage within an elastic interaction framework which allows us to simulate these observations. This study shows that the failure in rocks can be the result of damage accumulation

    Highlights from the first ten years of the New Zealand earthquake forecast testing center

    Get PDF
    We present highlights from the first decade of operation of the New Zealand Earthquake Forecast Testing Center of the Collaboratory for the Study of Earthquake Predictability (CSEP). Most results are based on reprocessing using the best available catalog, because the testing center did not consistently capture the complete real-time catalog. Tests of models with daily updating show that aftershock models incorporating Omori- Utsu decay can outperform long-term smoothed seismicity models with probability gains up to 1000 during major aftershock sequences. Tests of models with 3-month updating show that several models with every earthquake a precursor according to scale (EEPAS) model, incorporating the precursory scale increase phenomenon and without Omori-Utsu decay, and the double-branching model, with both Omori-Utsu and exponential decay in time, outperformed a regularly updated smoothed seismicity model. In tests of 5-yr models over 10 yrs without updating, a smoothed seismicity model outperformed the earthquake source model of the New Zealand National Seismic Hazard Model. The performance of 3-month and 5-yr models was strongly affected by the Canterbury earthquake sequence, which occurred in a region of previously low seismicity. Smoothed seismicity models were shown to perform better with more frequent updating. CSEP models were a useful resource for the development of hybrid time-varying models for practical forecasting after major earthquakes in the Canterbury and Kaikoura regions. © 2018 Seismological Society of America. All rights reserved

    Ethics of clinical trials from bayesian perspective: medical decision making should use posteriors, not priors.

    Get PDF
    <p><b>A-B. Analysis of stimulation-induced changes in muscle fiber diameter (MFD) of TAM (A) and PCAM (B).</b> MFD values were grouped in 10 ÎŒm bins and are presented as percentage of total fibers <b>3C. Analysis of stimulation-induced changes in fiber type distribution</b>. Relative percentages of type 1 and type 2 fibres for both muscles.</p

    Longitudinal Assessment of Growth in Hypoplastic Left Heart Syndrome: Results From the Single Ventricle Reconstruction Trial

    Get PDF
    Background: We sought to characterize growth between birth and age 3 years in infants with hypoplastic left heart syndrome who underwent the Norwood procedure. Methods and Results: We performed a secondary analysis using the Single Ventricle Reconstruction Trial database after excluding patients 2 SD below normal). Failure to find consistent risk factors supports the strategy of tailoring nutritional therapies to patient‐ and stage‐specific targets. Clinical Trial Registration URL: http://clinicaltrials.gov/. Unique identifier: NCT00115934

    Bilateral Functional Electrical Stimulation for the Treatment of Presbyphonia in a Sheep Model

    Get PDF
    Objectives: The aim of the study was to increase muscle volume and improve phonation characteristics of the aged ovine larynx by functional electrical stimulation (FES) using a minimally invasive surgical procedure. Methods: Stimulation electrodes were placed bilaterally near the terminal adduction branch of the recurrent laryngeal nerves (RLN). The electrodes were connected to battery powered pulse generators implanted subcutaneously at the neck region. Training patterns were programmed by an external programmer using a bidirectional radio frequency link. Training sessions were repeated automatically by the implant every other day for 1 week followed by every day for 8 weeks in the awake animal. Another group of animals were used as sham, with electrodes positioned but not connected to an implant. Outcome parameters included gene expression analysis, histological assessment of muscle fiber size, functional analysis, and volumetric measurements based on three-dimensional reconstructions of the entire thyroarytenoid muscle (TAM). Results: Increase in minimal muscle fiber diameter and an improvement in vocal efficiency were observed following FES, compared with sham animals. Conclusion: This is the first study to demonstrate beneficial effects in the TAM of FES at molecular, histological, and functional levels. FES of the terminal branches of the RLN reversed the effects of age-related changes and improved vocal efficiency
    • 

    corecore