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Regional Earthquake Likelihood Models II: Information

Gains of Multiplicative Hybrids

by D. A. Rhoades, M. C. Gerstenberger, A. Christophersen, J. D. Zechar,*

D. Schorlemmer,* M. J. Werner,† and T. H. Jordan

Abstract The Regional Earthquake Likelihood Models experiment in California
tested the performance of earthquake likelihood models over a five-year period.
First-order analysis showed a smoothed-seismicity model by Helmstetter et al. (2007)
to be the best model. We construct optimal multiplicative hybrids involving the best
individual model as a baseline and one or more conjugate models. Conjugate models
are transformed using an order-preserving function. Two parameters for each conjugate
model and an overall normalizing constant are fitted to optimize the hybrid model.
Many two-model hybrids have an appreciable information gain (log probability gain)
per earthquake relative to the best individual model. For the whole of California, the
Bird and Liu (2007) Neokinema and Holliday et al. (2007) pattern informatics (PI) mod-
els both give gains close to 0.25. For southern California, the Shen et al. (2007) geodetic
model gives a gain of more than 0.5, and several others give gains of about 0.2. The best
three-model hybrid for the whole region has the Neokinema and PI models as conju-
gates. The best three-model hybrid for southern California has the Shen et al. (2007) and
PI models as conjugates. The information gains of the best multiplicative hybrids are
greater than those of additive hybrids constructed from the same set of models. The
gains tend to be larger when the contributing models involve markedly different con-
cepts or data. These results need to be confirmed by further prospective tests. Multi-
plicative hybrids will be useful for assimilating other earthquake-related observations
into forecasting models and for combining forecasting models at all timescales.

Introduction

The Regional Earthquake Likelihood Models (RELM)
experiment in California tested the performance of a variety
of earthquake forecasting models over a five-year period
(Schorlemmer and Gerstenberger, 2007). The target earth-
quakeswere thosewithmagnitudesM ≥4:95 in theAdvanced
National Seismic System catalog. Themodelswere based on a
variety of data inputs andmodeling techniques, including spa-
tial smoothing of previous earthquake locations, geodetic es-
timates of strain rates from Global Positioning System data,
identification of regionswith fluctuating seismicity rates, geo-
logic fault slip rates, and physics-based numerical earthquake
simulation (Bird and Liu, 2007 [Bird and Liu]; Ebel et al.,
2007 [Ebel et al.]; Field, 2007;Helmstetter et al., 2007 [Helm-
stetter et al.]; Holliday et al., 2007 [Holliday et al.]; Kagan
et al., 2007 [Kagan et al.]; Shen et al., 2007 [Shen et al.];Ward,

2007 [Ward]; Wiemer and Schorlemmer, 2007 [Wiemer and
Schorlemmer]). A first-order analysis of the results by the Col-
laboratory for the Study of Earthquake Predictability (CSEP)
showed the HKJ smoothed-seismicity model by Helmstetter
et al. (2007) to be the most informative model (Schorlemmer
et al., 2010; Zechar et al., 2013).

Additive hybrids have sometimes proved effective in
combining the information from disparate forecasting mod-
els to produce sizeable information gains over their compo-
nent models (Rhoades and Gerstenberger, 2009; Rhoades
and Stirling, 2012; Rhoades, 2013). However, in the case of
the RELM experiment, a Bayesian analysis of additive hy-
brids found that a probability-weighted average of the RELM
models does not outperform the best individual model to any
appreciable extent (Marzocchi et al., 2012).

A different approach to constructing hybrids is adopted
here, using a multiplicative procedure. Hybrid models with
multiplicative probability gains were suggested by the early
work of Aki (1981) and Utsu (1982) on conditionally inde-
pendent earthquake precursors. Later, Imoto (2006, 2007)
generalized the notion of multiple earthquake precursors to
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earthquake probabilities or rates estimated from multidiscipli-
nary observations and showed that multiplicative probability
gains could theoretically still be obtained without the inde-
pendence assumption. See also Faenza and Marzocchi (2010)
and Shebalin et al. (2014) for applications of a statistical
model with multiplicative structure to earthquake forecasting.
In the statistical literature, it is recognized that multiplicative
models are often appropriate for modeling of count data (e.g.,
McCullagh and Nelder, 1989).

With these previous works in mind, we assume a multi-
plicative structure for the expected number of earthquakes in
the cells of hybrid models formed from a selection of two or
more models in the RELM experiment. Each selection is com-
posed of a baseline model and one or more conjugate models.
Because the main question of interest is whether the best indi-
vidual model can be improved upon, only selections that in-
clude the best model as the baseline are considered. We aim to
construct optimal multipliers that can be applied to the cell
expectations of the baseline model by transforming the corre-
sponding cell expectations of the conjugate models. We also
aim to estimate the information gain of the hybrid model over
the baseline model, taking into account the number of param-
eters involved in fitting the multipliers and the limited number
of target earthquakes. A more dependable estimate of the
information gain will be provided in due course by formal
prospective testing of the hybrid models in the Southern
California Earthquake Center (SCEC) CSEP testing center.

The RELM experiment included models in two different
classes—the mainshock class and the mainshock+aftershock
class. The five-year test period provided 20 target earth-
quakes in the former class and 31 target earthquakes in the
latter class in the whole California test region. A majority of
the models submitted applied only to southern California,

with small variations between models in the regions actually
covered. For these models, the test period provided no more
than 11 earthquakes in the mainshock class and 22 in the
mainshock+aftershock class. The same limitations apply to
any hybrids that include these models. To have a satisfactory
number of target events for the fitting of hybrid models,
especially for southern California, the analysis here is focused
on the mainshock+aftershock target earthquake set, that is, all
earthquakes with M ≥4:95.

The spatial distribution of the rates of M 5.0 earthquakes
in the Helmstetter et al. HKJ model is illustrated in Figure 1.
In this and other figures, the earthquake rates are expressed
relative to a reference (RTR) model in which one earthquake
per year exceeding any magnitudem is expected in an area of
10m km2; the plotted rates are the result of dividing the fore-
cast rates by the reference rates. In this form of presentation,
introduced by Rhoades and Evison (2004), a common color
scale can be applied for different magnitude selections; the
rates in RTR units for a particular model are dependent on
magnitude only if the Gutenberg–Richter b-value of the
model differs from 1.

Method

Each cell of a RELM model applies to an earthquake
location bin, indexed by j, and a magnitude bin, indexed
by k. The expected number of earthquakes in each cell of
the baseline model during the five-year period of the experi-
ment is denoted by fλ1!j; k"g, that of the conjugate models by
fλi!j; k"g, i # 2;…; ni, and that of the hybrid model by
fλH!j; k"g, in which i indexes the conjugate model itself, j #
1;…; nj is the number of location bins, and k # 1;…; nk is
the number of magnitude bins. For the baseline model, the
expectation in each cell is preserved and becomes the first
factor of the hybrid rate. For a conjugate model, the expected
number in each spatial bin is first summed over all magnitude
bins, and the summed expectation is denoted λi!j; ·".

λi!j; ·" #
Xnk

k#1

λi!j; k": !1"

Implicit in this procedure is the assumption that a conju-
gate model contains no magnitude-specific information about
earthquake occurrence beyond that already incorporated in the
baseline model. This assumption is reasonable for models that
follow the Gutenberg–Richter frequency–magnitude relation
with a spatially invariant b-value. The summed expectation
is treated as an index of earthquake occurrence, that is, as an
alarm function in the sense of Zechar and Jordan (2008). The
ordering of the summed expectations over the spatial cells is
held to be important, but not the actual summed expectations
themselves. This ordering is preserved in computing the mod-
el’s multiplicative contribution to the hybrid. We use a smooth
nonlinear transformation of flexible form, but with only a
small number of adjustable parameters, to convert a summed
expectation into a multiplier. The hybrid model has the form

Figure 1. Map of earthquake rates, relative to reference (RTR),
in the baseline Helmstetter et al.HKJ mainshock+aftershock model.
In the reference model, one earthquake per year is expected to
exceed any magnitude m in an area of 10m km2. The color version
of this figure is available only in the electronic edition.
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λH!j; k" # λ1!j; k" exp
!
a$

Xni

i#2

fi%λi!j; ·"&
"
; !2"

in which fi is an order-preserving function of the form

fi%λ& # bi!log!1$ λ""ci !bi ≥ 0; ci > 0": !3"

The adjustable parameters are the normalizing parameter a
and the shape parameters bi and ci; i # 2;…; ni. The func-
tional form of fi is chosen because it is non-negative, mono-
tone nondecreasing, and of flexible form. Within the range of
values of cell expectations in this study, in which λ ≪ 1 and
therefore log!1$ λ" ≈ λ, it can be approximately linear, con-
vex downward, convex upward, or constant, depending on the
parameters. The results will clearly depend to some extent on
the form of the function used. When fitting a large set of target
earthquakes, it would be feasible (and perhaps even desirable)
to use a function with more parameters and, consequently,
greater flexibility. However, the number of target earthquakes
is not large in this study, and to avoid overfitting, a function
with only two adjustable parameters for each conjugate model
is used.

We compare the log-likelihood gains of multiplicative
hybrids with those of additive hybrids. For this purpose,
we construct optimal additive hybrids, in which the cell
expectations are linear combinations of the corresponding
expectations in the individual models that is

λH!j; k" #
Xn

i#1

aiλi!j; k" !ai ≥ 0; i # 1;…; n"; !4"

in which there are n adjustable parameters (ai, i # 1;…; n).
The adjustable parameters of the hybrid models are fit-

ted by maximum likelihood, using the downhill simplex
method (Nelder and Mead, 1965). The aim is to produce
hybrid models that are more informative than the individual
models. To compute the information gain, we need to take
into account the number of fitted parameters in each hybrid
model and the number of target earthquakes. Accordingly,
for the fitted hybrid models, we estimate the corrected
information gain per earthquake (IGPEc) using the corrected
Akaike information criterion (AICc) statistic (Hurvich and
Tsai, 1989), which adjusts the standard AIC for choosing
between competing fitted models (Akaike, 1974) taking into
account the number of target earthquakes. The AICc statistic
is of the form

AICc # −2 lnL$ 2p$
p$ 1

N − p − 1
; !5"

in whichN is the number of target earthquakes, p is the num-
ber of fitted parameters, and lnL is the log likelihood of the
fitted hybrid model, given by (Rhoades et al., 2011)

lnL #
XN

n#1

ln λH!jn; kn" − N̂H; !6"

in which the N target earthquakes occur in cells
f!jn; kn"; n # 1;…; Ng, and N̂H denotes the total expected
number, of target earthquakes of the hybrid model, that is

N̂H #
Xnk

k#1

Xnj

j#1

λH!j; k": !7"

The form of the log likelihood in equation (6) differs
from that given by Schorlemmer et al. (2007) in that it is
devoid of the Poisson penalty term for more than one target
earthquake occurring in a single cell. However, this differ-
ence does not affect the optimization of parameters or the
likelihood ratio of two different models.

If Δ is the change in AICc achieved by fitting the hybrid
model fλH!j; k"g, compared to the baseline model fλ1!j; k"g,
then the corrected information gain per earthquake is

IGPEc #
−Δ
2N

: !8"

The product of the multipliers is unity for all values of λi if
a # 0 and bi # 0, for i # 2;…; ni. Therefore, the optimized
hybrid model cannot have a lower log likelihood than the
baseline model. However, the IGPEc can be negative,
because of the penalties for p and N in AICc. The uncertainty
of the corrected information gain can be assessed using an
adaptation of the T-test (Rhoades et al., 2011) for comparing
one earthquake likelihood model to another based on inde-
pendent data. From equations (5) and (6), we have

IGPEc #
N̂1 − N̂H

N
−

1

2N

#
2p$

p$ 1

!N − p − 1"

$

$
1

N

XN

n#1

%Xn − Yn&; !9"

in which Xn # ln λH!jn; kn", Yn # ln λ1!jn; kn", and N̂i
denotes the total expected number of target earthquakes of
the ith model.

Equation (9) is equivalent to the expression for the IGPE
for prospective testing given in equation (17) of Rhoades
et al. (2011), except for an added penalty in the second term
for the number of fitted parameters and the finite number of
target earthquakes. The adapted T-test is therefore the same
as that of Rhoades et al. (2011) except for this added penalty.
It must be emphasized that retrospective testing using a
modified test statistic, however carefully constructed, is a
poor substitute for prospective testing, in which all adjustable
parameters are set independently of the test data. In retro-
spective testing, the problem of overfitting can never be
eliminated with certainty.
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The hybrid models were fitted using all earthquakes
with M ≥4:95 in the test period as the target earthquakes.
Some models were submitted in different versions to the
mainshock and mainshock+aftershock classes and some only
to one class (Zechar et al., 2013). If a model was submitted to
the mainshock+aftershock class, that version of the model is
used for forming hybrids. This applies to the models by Bird
and Liu (2007), Ebel et al. (2007), Helmstetter et al. (2007),
Kagan et al. (2007), and Shen et al. (2007). Otherwise the
model submitted to the mainshock class is used. This applies
to the models by Holliday et al. (2007), Wiemer and Schor-
lemmer (2007), and the six different models by Ward (2007),
although it emerged during the tests that the Holliday et al.
model was actually intended for the mainshock+aftershock
class (Zechar et al., 2013). Because the fitting process
includes a normalization parameter, no model is disadvan-
taged by the difference between the total expected number of
earthquakes in these two classes. Ebel et al. (2007) submitted
both an original and a corrected version of their model; only
the corrected version is used here.

Results

Two-Model Hybrids

The optimal hybrids were first computed for all pairs of
models that include the Helmstetter et al. HKJ model as the
baseline. Summary statistics of these two-model hybrids are
shown in Table 1, including the fitted parameter values, the
number of target earthquakes, and the increase in the log like-
lihood of the hybrid model compared to the baseline model.
For the Bird and Liu Neokinemamodel and the Holliday et al.
pattern informatics (PI) model, optimal hybrids were formed
with the HKJ model both for the whole test region and for the
smaller southern California region covered by the Shen et al.
geodetic model. Both of these conjugate models give substan-
tial log-likelihood increases when applied to the whole of
California. Therefore, there is interest in knowing their value
as conjugate models in comparison to the models that are
defined only for southern California.

Table 1 shows that all hybrid models except those
involving Wiemer and Schorlemmer Asperity-based Likeli-
hoodModel (ALM) and Ebel et al. give considerable gains in
the log likelihood over the Helmstetter et al.HKJ model. The
hybrid model with the largest gain is that involving the Shen
et al. geodetic model for southern California. Among the hy-
brid models for the whole of California, the models involving
the Bird and Liu Neokinema model and the Holliday et al. PI
model have the largest gains, and these models also have the
second and third ranked gains for southern California.

The log-likelihood gains of the best two-model multipli-
cative hybrids are much greater than those of the optimal
additive models constructed, as in equation (4), by combin-
ing all models for the whole of California and for southern
California. For the whole of California, the optimal additive
hybrid model has a log-likelihood gain of 4.8, compared with

11.4 for the best two-model multiplicative hybrid. It has
coefficients of 0.44 for Helmstetter et al.HKJ, 0.39 for Holli-
day et al. PI, 0.12 for Wiemer and Schorlemmer ALM, and
less than 0.001 for the other models. The log-likelihood gain
of 4.5 corresponds to an IGPEc of 0.06 if the penalties for
the two parameters that make negligible contributions to
the optimal additive hybrid are neglected and to a negative
information gain if they are not. For southern California, the
optimal additive hybrid has a log-likelihood gain of 0.5,
compared to 16.2 for the best two-model multiplicative
hybrid. It has coefficients of 0.90 for Helmstetter et al.
HKJ, 0.28 for Holliday et al. PI, and less than 0.001 for
all other models. The log-likelihood gain of 0.05 corresponds
to a negative value of IGPEc for the additive hybrid model.
The low gains from forming additive hybrids of these models
are consistent with the results of the Bayesian analysis by
Marzocchi et al. (2012).

Figure 2 illustrates the optimal transformation of the
conjugate model in each two-model multiplicative hybrid
and the cumulative distribution over spatial cells of the
summed cell rate for each conjugate model covering the
whole of California. Figure 3 does the same for the conjugate
models for southern California. The optimal transformations
differ noticeably for the hybrids involving the Holliday et al.
PI model for the whole of California and for southern
California, showing that the optimal transformations can
be sensitive to a subset of the test region. The much higher
multiplier for low cell expectations in the whole of California
can be attributed to the influence of three target earthquakes
in northern California for which the PI model had very low
expectations (see tables 2 and S2 of Zechar et al., 2013): the
M 5.0 earthquake of 25 June 2007 at (41.12° N, 124.82° W),

Table 1
Parameter Estimates and Other Statistics of Two-Model

Multiplicative Hybrids

Conjugate Model a b2 c2 N Δ lnL

Holliday et al. PI −1.58 12.14 0.554 31 11.2
Bird and Liu
Neokinema

−9.96 13.05 0.067 31 11.4

Wiemer and
Schorlemmer ALM

−2.73 2.88 0.022 31 0.9

Ebel et al. −1.26 1.40 0.050 31 0.08
Shen et al. geodetic −9.05 19.79 0.153 22 16.2
Kagan et al. −9.70 19.22 0.139 22 8.3
Ward geodetic8.1 −14.88 20.00 0.069 20 7.4
Ward geodetic8.5 −13.55 19.43 0.075 20 7.4
Ward seismic −15.10 19.83 0.060 20 6.0
Ward combo −13.58 19.77 0.086 20 6.5
Ward simulation −15.16 18.08 0.030 20 3.6
Ward geologic −14.03 16.99 0.038 20 4.4
Holliday et al.
PI (S Cal)

−14.61 17.67 0.045 22 9.5

Bird and Liu
Neokinema (S Cal)

−15.93 19.48 0.047 22 10.3

N, number of target earthquakes;Δ lnL, increase in log likelihood over
baseline Helmstetter et al. HKJ model; S Cal, southern California.

Regional Earthquake Likelihood Models II: Information Gains of Multiplicative Hybrids 3075



the M 5.0 earthquake of 26 April 2008 at (39.53° N,
119.93° W), and the M 5.4 earthquake of 30 April 2008
at (40.84° N, 123.50° W).

The cumulative distributions of the cell expectations, in
conjunction with the optimal transformations of cell expect-
ations, indicate what proportion of the cell expectations
receives a multiplier in any given range. The cumulative dis-
tributions differ markedly between the conjugate models. In
some cases, such as the Ebel et al. and Holliday et al. PI
models (Fig. 2), the distribution function is composed mostly
of jumps, indicating that the expectations are mostly concen-
trated at certain discrete values. In other cases, such as the
Bird and Liu Neokinema and Kagan et al. models (Fig. 3),
the distribution function increases smoothly. In yet other
cases, such as the Wiemer and Schorlemmer ALM (Fig. 2)
and Ward geologic (Fig. 3) models, the distribution function
has both jumps and smooth sections.

For a hybrid forecast to have a large log-likelihood gain
over the baseline model, it is necessary for the distribution of
earthquake-cell expectations to be substantially different in
the hybrid model than in the baseline model. If the multiplier
varies over a wide range, the difference between the distribu-
tion of cell expectations in the hybrid and baseline models
tends to be large. Therefore, it is not surprising that the con-
jugate models producing large log-likelihood gains (Table 1),
such as the Shen et al. geodetic, Bird Liu Neokinema, and
Holliday et al. PI, tend to have a wide range for the multiplier
(Figs. 2 and 3), and that those producing small information
gains, such as Ebel et al. andWiemer and SchorlemmerALM,
tend to have a narrow range. However, having awide range for
the multiplier is not a sufficient condition to produce a large
gain, because it is necessary also that the expected numbers in
the conjugatemodel bewell correlatedwith earthquake occur-
rence in someways that the baselinemodel is not. Therefore, it
is again not surprising that somemodels with a wide range for

the multiplier, such as Ward simulation (Fig. 3), which has a
multiplier varying over four orders of magnitude, can also
have a low log-likelihood gain (Table 1).

The maximum value taken by the multiplier is indicative
of the correlation of expected numbers in the baseline and
conjugate models. Because the hybrid models in each class
(the whole of California, or southern California) are all nor-
malized to a similar number of target earthquakes, the total
expected number of earthquakes, that is, the sum over all
cells of the product of the baseline expected numbers and
their associated multipliers, is approximately the same for
all models in each class. The cells with the largest products
contribute most to this sum. Conjugate models that are well
correlated with the baseline model tend to have their highest
expected numbers in the same cells as the baseline model,
and the hybrid models are constructed so that the highest
multipliers are in the cells with the highest conjugate model
expectations. If high cell expectations in the baseline model
all have high multipliers, then they all have very high prod-
ucts, and the expected number of earthquakes is strongly
increased. Therefore, conjugate models that are well corre-
lated with the baseline model will tend to produce multipliers
with a relatively low maximum value, and vice versa. We
deduce that the Ebel et al., Holliday et al. PI, Wiemer and
Schorlemmer ALM, the Ward geologic, Ward seismic, and
Ward simulation, which have maximum multipliers not
much larger than 1, are all well correlated with the Helmstet-
ter et al. HKJ model, at least in the cells where their expected
numbers are highest. Similarly, we deduce that the Shen et al.
geodetic, Ward geodetic8.1, and Ward geodetic8.5 models,
which have maximum multipliers of about 10, are not well
correlated with the baseline model in the cells where their
expected numbers are highest.

Figure 4 shows the adapted T-tests comparing the IGPEc
of theHKJmodelwith each of the hybridmodels for thewhole

Figure 2. Conversion of cell expectation to multiplier for conjugate models defined for the whole of California in two-model hybrids with
the Helmstetter et al. HKJ as the baseline model. For each conjugate model, the upper frame shows the multiplier exp!a$ f2%λ2!j; ·"&", and
the lower frame shows the cumulative distribution of summed spatial expectations λ2!j; ·". For the Neokinema and pattern informatics (PI)
models, the optimal multipliers for southern California only are also shown. The color version of this figure is available only in the electronic
edition.
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of California. In this figure, a negative IGPEc implies that the
hybrid model is more informative than the HKJ model, and a
95% confidence interval wholly to the left of the vertical zero
line indicates a statistically significant information gain at the
95% confidence level. The hybrid models are ranked accord-
ing to information gain. Two hybrid models, involving Bird
and Liu Neokinema and Holliday et al. PI, have an IGPEc of
greater than 0.2 compared to the HKJ model, which is almost
significant at the 95% confidence level. The other two, involv-
ing Ebel et al. and Wiemer and Schorlemmer ALM, are sig-
nificantly less informative than HKJ, implying that the small
likelihood gain of these hybrid models is insufficient to out-
weigh the penalty for the fitted parameters and the small target
earthquake set.

Figure 5 shows the adapted T-tests of hybrid models for
southern California, again ranked according to information
gain. Onemodel, the hybrid involving the Shen et al. geodetic
model, has an IGPEc of 0.57, which is significant with more
than 95% confidence. The information gain of the hybrid
involving the Bird and Liu Neokinema model (0.30), which
is ranked second, is not quite significant at the 95% level.

However, the information gains of hybrids involving the fol-
lowing models, ranking third to sixth, are significant: Holli-
day et al. PI (0.26), Kagan et al. (0.20), Ward geodetic8.1
(0.18), and Ward geodetic8.5 (0.20). The hybrids involving
the Ward combo, Ward seismic, Ward geologic, and Ward
simulation models have smaller information gains relative
to the HKJ model.

The estimates of information gain of the hybrid models,
as shown in Figures 4 and 5, are generally greater than would
be expected to result by chance. Given that these estimates
are adjusted for the number of fitted parameters and the num-
ber of target earthquakes, the expected information gain from
combining two models that contain no independent informa-
tion on earthquake occurrence is zero or less. In fact, the
IGPEc of most of the multiplicative models is positive, and
for 5 out of 14 models (much more than the 1 out of 20 ex-
pected) it is significantly so.

Figure 6 illustrates the spatial distribution of expected
numbers in the conjugate models and hybrid models for
the whole of California. The hybrids with Bird and Liu Neo-
kinema and Holliday et al. PI as the conjugate models have a

Figure 3. Conversion of cell expectation to multiplier for conjugate models defined for southern California only. For each conjugate
model, the upper frame shows the multiplier exp!a$ f2%λ2!j; ·"&", and the lower frame shows the cumulative distribution of summed spatial
expectations λ2!j; ·". The color version of this figure is available only in the electronic edition.
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similar IGPEc compared to the baseline HKJ model, but their
spatial distributions are noticeably different from each other
and from the HKJ model (Fig. 1). The spatial distribution of
the Wiemer and Schorlemmer ALM and Ebel et al. conjugate
models appear to be coarse versions of the spatial pattern
represented in a more smoothly varying form by the HKJ
model (Fig. 1). It is therefore not surprising that the spatial
distributions of the corresponding hybrid models are visually
similar to the HKJ model, and that these hybrid models are
less informative than the HKJ model according to the adapted
T-test (Fig. 4).

Figure 7 illustrates the spatial distribution of expected
numbers in the conjugate models for southern California
and their associated hybrids with the HKJ model. Again it
is notable that models that give similar information gains
in hybrid with the HKJ model, such as Kagan et al., Ward
geodetic8.1, and Ward geodetic8.5 (Fig. 5), have noticeably
different spatial distributions in Figure 7.

Three-Model Hybrids

It is natural to search for the best multiple-model
hybrids. However, the number of fitted parameters increases
by two for each model added. Therefore, in view of the small
number of target earthquakes and to avoid overfitting, we do
not consider hybrids with more than three models. Starting
with the best pair of models for the whole of California
(Helmstetter et al. HKJ and Bird and Liu Neokinema) and
for southern California (Helmstetter et al.HKJ and Shen et al.
geodetic), three-model hybrids were formed with each
remaining conjugate model. Table 2 shows the best three-

model hybrids for the whole of California and for southern
California. In both cases, the best three-model hybrid was
formed by adding Holliday et al. PI as the third model.
The two hybrids shown in Table 2 are the only three-model
hybrids that had a higher IGPEc than the best two-model
hybrid; they are also the only three-model hybrids having
a log-likelihood increase Δ lnL greater than one compared
to the best two-model hybrid.

Two information gain statistics and their standard errors
are given for each three-model hybrid in Table 2: IGPEc is the
information gain per earthquake relative to the baseline HKJ
model, and ΔIGPEc is the information gain per earthquake
relative to the best two-model hybrid. These mean statistics
can be assumed to be approximately normally distributed
because of the central limit theorem. The IGPEc of 0.35
for the best three-model hybrid for the whole of California
is slightly more than twice its standard error of 0.17, indicat-
ing statistical significance at about the 95% confidence level.
The IGPEc of 0.79 for the best three-model hybrid for
southern California is nearly three times its standard error
of 0.29, indicating that it is easily significant at the 95%
level. On the other hand, the ΔIGPEc of 0.092 for the best
three-model hybrid for the whole of California is only 0.98
times its standard error, and the ΔIGPEc of 0.22 for the best
three-model hybrid for southern California is only 1.6 times
its standard error; therefore, neither of these information
gains are statistically significant.

The spatial distributions of rates in the best three-model
hybrid for the whole of California and southern California
are mapped in Figure 8. In both cases, the best three-model
hybrid has more contrasting earthquake rates than the corre-
sponding best two-model hybrid. The areas with high rates
are smaller and more intense, and the low rates (darker

Figure 5. IGPEc of the Helmstetter et al. HKJ model compared
to two-model hybrids for the southern California, corrected for
parameter fitting and finite number of target earthquakes. Confi-
dence intervals are 95% confidence limits. A negative information
gain implies the hybrid model is better than the HKJ model. The
color version of this figure is available only in the electronic edition.

Figure 4. Information gain per earthquake (IGPEc) of the Helm-
stetter et al. HKJ model compared to two-model hybrids for the
whole of California, corrected for parameter fitting and finite num-
ber of target earthquakes. Confidence intervals are 95% confidence
limits. A negative information gain implies the hybrid model is bet-
ter than the HKJ model. The color version of this figure is available
only in the electronic edition.
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zones) occupy a larger proportion of the total area. These
differences are due to the impact of the Holliday et al. PI
model, which is itself a model of high contrasts, on the
three-model hybrid rates.

Discussion

An observed trend is that larger information gains are
obtained when the contributing models involve markedly dif-
ferent concepts or data. In particular, the models that make
use of geodetic data, namely the Shen et al. geodetic, Bird
and LiuNeokinema,Ward geodetic8.1, andWard geodetic8.5
models, are effective as conjugate models with the Helmstet-
ter et al.HKJ model, which makes use only of the earthquake
catalog, as baseline. It has been noted above that these models
are not closely correlated with the Helmstetter et al. HKJ
model, and also that an effective conjugatemodelmust be cor-
related with earthquake occurrences in a way that the baseline
model is not. Further evidence that geodetic data could be
used to improve earthquake forecasts based on catalog data
was given recently by Wang et al. (2013). The effectiveness
of the Holliday et al. PI model as a conjugate model in both
two-model and three-model hybrids, is also worthy of note.
Although based entirely on the earthquake catalog, this model

is conceptually quite different from smoothed seismicity
models. The information gains it provides in hybrid combi-
nations are evidence that the seismicity patterns used by this
model are useful for earthquake forecasting even if, as a stand-
alone model, it may not be as informative as some others.

The larger information gains of the multiplicative
hybrids used here, compared to additive hybrids, is partly
due to the wider range of expectations that they entertain
in any particular cell. Additive hybrids essentially produce
weighted average expectations, modified by a normalization
factor that is usually not much different from 1. Therefore, a
cell expectation in an additive model is usually within the
range of expectations of the individual models for the same
cell. In contrast, in multiplicative hybrids, a cell expectation
can be far outside the range of expectations of the individual
models. However, this only occurs where the data as a whole
support a much higher or lower multiplier than 1 for that cell,
taking into account the constraints imposed on the multiplier
by the parameterization of the model.

The challenge of continually increasing the information
value of earthquake forecastingmodels can bemet by learning
how to integrate information from a variety of data and mod-
eling inputs into hybrid models. Themethod presented here is
a step in that direction. Although the parametric details of the

Figure 6. Map of earthquake rates, RTR, in conjugate models for the whole of California (on top) and in their hybrids with the baseline
Helmstetter et al.HKJ model (underneath). In the reference model, one earthquake per year is expected to exceed any magnitudem in an area
of 10m km2. The color version of this figure is available only in the electronic edition.
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method have no particular standing, the general approach is
potentially very useful. It provides a systematicway of assimi-
lating new elements, data or modeling inputs, into statistical
forecasting models, by fitting a few extra parameters for each
new element. This is similar to the way in which multiple
regression analysis can be used to explain much more of the
variation of a response variable than any individual explana-
tory variable could on its own.

In the present case, the inputs are all RELMs, but the
method presented does not depend on that. The inputs could
be any gridded data or modeled quantity, such as a strain

map, a stress-change map, a binary variable indicating pres-
ence or absence of a proposed earthquake precursor, or a cat-
egorical variable indicating the degree of an alarm.

Just as multiple regression analysis is more robust when
the number of observations is large and the number of explan-
atory variables is relatively small, so the present method is
likely to be more robust when the number of target earth-
quakes is large and the number of input elements is relatively
small. In any case, the results from retrospective fitting need
to be confirmed by further prospective tests. All of the two-
model hybrids and the best three-model hybrids derived here

Figure 7. Map of earthquake rates, RTR, in conjugate models for southern California (on top) and in their hybrids with the baseline
Helmstetter et al.HKJ model (underneath). In the reference model, one earthquake per year is expected to exceed any magnitudem in an area
of 10m km2. (a) Kagan et al., Shen et al. geodetic, Ward combo, and Ward geodetic8.1 models; (b) Ward geodetic8.5, Ward geologic, Ward
seismic, and Ward simulation models. The color version of this figure is available only in the electronic edition.
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have been submitted to the SCEC CSEP testing center for
evaluation over a further five-year test period from 2011
to 2015.

These prospective tests also have limitations, because
the forecasts were originally designed for a particular five-
year period. They may have varying degrees of applicability
to other periods, depending on the degree of time depend-
ence in the data used to generate them. Ideally, a new pro-
spective test of the hybrid models would use updated
versions of the individual forecasts, produced by exactly the
same methods as the original forecasts. Such updates can
only be produced by the authors of the models.

There are many questions still to be answered by more
widespread application of multiplicative hybrids. As well
as the issue of how well retrospectively fitted hybrids will
perform in prospective testing, there are questions of whether
it is always advantageous to use the best individual model
as the baseline, and whether a hybrid not including the
best model might sometimes outperform those including it.
Limited additional experimentation with the models in the
RELM experiment, not described in detail here, has shown
that for two-model hybrids for the whole of California, it
is advantageous to use the best model as the baseline, and
that all two-model hybrids that do not include the HKJ model
have a negative corrected information gain over the HKJ
model by itself.

Conclusions

The original aim of the RELM five-year experiment, and
of subsequent CSEP experiments to date, was to prospec-
tively test individual models for consistency with the target
earthquakes occurring in a test region and to compare
the performance of each model with that of other available

models. However, an equally important aim, especially for
operational earthquake forecasting, is to combine the avail-
able forecasting models and other relevant data to form the
most informative model possible.

For the models in the RELM five-year experiment, multi-
plicative hybrids have been shown to be potentially more
informative than additive hybrids constructed from the same
individual models. Although a smoothed seismicity model
was the most informative individual model in the RELM
five-year experiment, other models, such as those making
use of geodetic data and analysis of seismicity fluctuations,
may have important contributions to make when constructing
an improved forecast. Prospective testing of the multiplica-
tive hybrid models derived here for a further period of five
years or more will give an indication of the robustness of the
fitting of the multiplicative hybrid models.

The technique of forming multiplicative hybrids
described here will be useful for assimilating new and diverse
earthquake-related datasets into forecasting models and for
combining models from CSEP forecasting experiments at
all timescales. Its routine application to other models and
datasets already available, with priority given to combining
models and data carrying different kinds of information,
would give an indication of the information gains that are
obtainable now.

Data and Resources

The Advanced National Seismic System catalog was
obtained by a request to the Southern California Earthquake
Center Collaboratory for the Study of Earthquake Probability
Testing Center. Some plots were made using the Generic
Mapping Tools version 4.2.1 (Wessel and Smith, 1998). The
software used to optimize the multiplicative hybrid models is

Table 2
Parameter Estimates and Other Statistics of Best Three-Model

Multiplicative Hybrids

Whole of California Southern California

Baseline (model 1) Helmstetter et al. HKJ Helmstetter et al.HKJ
Conjugate (model 2) Bird and Liu

Neokinema
Shen et al. geodetic

Conjugate (model 3) Holliday et al. PI Holliday et al. PI
a −6.49 −10.38
b2 7.77 19.72
c2 0.094 0.230
b3 16.70 8.64
c3 0.764 0.188
N 31 22
Δ lnL 6.8 7.94
IGPEc 0.35 0.79
Std Error (IGPEc) 0.17 0.27
ΔIGPEc 0.092 0.22
Std Error (ΔIGPEc) 0.094 0.14

N, number of target earthquakes; Δ lnL, increase in log likelihood
compared to best two-model hybrid; IGPEc, information gain per
earthquake relative to baseline model; ΔIGPEc, information gain per
earthquake relative to best two-model hybrid.

Figure 8. Map of earthquake rates, RTR, in the best three-model
hybrids for (a) the whole of California: a hybrid of Helmstetter et al.
HKJ, Bird and Liu Neokinema, and Holliday et al. PI; and
(b) southern California: a hybrid of Helmstetter et al. HKJ, Shen
et al. geodetic, and Holliday et al. PI. In the reference model,
one earthquake per year is expected to exceed any magnitude m
in an area of 10m km2. The color version of this figure is available
only in the electronic edition.
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available on request from the first author, or from the SCEC
CSEP testing center.
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