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ABSTRACT 

We present highlights from the first decade of operation of the New Zealand Earthquake 

Forecast Testing Centre of the Collaboratory for the Study of Earthquake Predictability 

(CSEP). Most results are based on reprocessing using the best available catalog, because the 

testing center did not consistently capture the complete real-time catalog. Tests of models 

with daily updating show that aftershock models incorporating Omori-Utsu decay can 

outperform long-term smoothed seismicity models with probability gains up to 1000 during 

major aftershock sequences. Tests of models with three-month updating show that several 

versions of the EEPAS (Every Earthquake a Precursor According to Scale) model, 

incorporating the precursory scale increase phenomenon and without Omori-Utsu decay, and 

the Double-Branching model, with both Omori-Utsu and exponential decay in time, 

outperformed a regularly updated smoothed seismicity model. In tests of five-year models 

over ten years without updating, a smoothed seismicity model outperformed the earthquake 

source model of the New Zealand national seismic hazard model. The performance of three-

month and five-year models was strongly affected by the Canterbury earthquake sequence, 

which occurred in a region of previously low seismicity. Smoothed seismicity models were 

shown to perform better with more frequent updating.  CSEP models were a useful resource 

for the development of hybrid time-varying models for practical forecasting after major 

earthquakes in the Canterbury and Kaikōura regions. 

 

INTRODUCTION 

The New Zealand Earthquake Forecast Testing Center (Gerstenberger & Rhoades, 2010) is a 

computer system established in 2008 as one of the regional testing centers of the 

Collaboratory for the Study of Earthquake Predictability (CSEP; Zechar et al.2010). Its 

purpose is to transparently test earthquake forecasting models against future earthquakes in 
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the testing region in defined magnitude classes, i.e., target earthquakes. Several major 

earthquakes have occurred in the testing region (Figure 1) during the past decade, including 

the 2010 M7.1 Darfield earthquake and its aftershocks (the Canterbury earthquakes) and the 

2016 M7.8 Kaikōura earthquake. The Canterbury earthquakes stimulated two important 

retrospective experiments (Rhoades et al. 2016; Cattania et al. 2018, this issue). Prospective 

testing is being conducted for four classes of models, grouped according to the time-period 

for updating: five-years (time-invariant), six-months, three-months and one-day. Here we 

summarise the performance of the five-year models over 10 years of testing, of the three-

month models from their inception in 2009 to 2017, and of the 1-day models during the 

Darfield and Kaikōura aftershock sequences. We also compare information gains between 

models from different classes during these two sequences.  

 

EARTHQUAKE CATALOG TRANSITION AND LATENCY 

The GeoNet Catalog is the authoritative information source for earthquake data supplied to 

the testing center (Gerstenberger and Rhoades, 2010). During 2012 there was a transition in 

GeoNet processing of the earthquake catalog from the CalTech-USGS seismic processor 

(CUSP) system (Lee et al., 1989) to the more automatic SeisComP3 (SC3) system (Hanka et 

al., 2010). The quality of the near real-time earthquake catalog during the CUSP period was 

negatively affected by large backlogs in processing of major earthquake sequences. At the 

beginning of the SC3 period, GeoNet temporarily withdrew the first few months of the SC3 

catalog for a time, after anomalies in earthquake locations were noticed. Earthquake 

magnitudes were also affected by the transition. Both CUSP and SC3 produce local 

magnitudes, but CUSP used attenuation relations adjusted to New Zealand while SC3 was 

installed with the Californian attenuation relations. Statistical comparisons show that 

magnitudes of small earthquakes are lower in the SC3 catalogue but for M ≥ 5 the 
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magnitudes are similar to those in the CUSP catalog (Rhoades et al. 2015). The near real-time 

catalog has thus been of variable quality over the ten years of testing and has included 

sizeable gaps at certain times. Moreover, the testing center was correctly configured to 

upload the SC3 catalog only between September 2014 and August 2016. Consequently, there 

was no real-time processing of forecasts during the aftershock sequence of the M7.8 

Kaikōura earthquake of 13 November 2016 (UTC).  

 

The five-year and three-month model tests have now been reprocessed using the best catalog 

available at the end of 2017 – a composite of the CUSP catalog up to 2012 and the SC3 

catalog from 2013 on. So far, there has only been time to reprocess the one-day models for 

selected periods. The one-day models have been reprocessed from 10 November 2016 (UTC) 

through 13 February 2017 (UTC), in order to evaluate their performance during the first three 

months of aftershocks of the M7.8 Kaikōura earthquake. In contrast, the testing center was 

functioning well during the first year of the Canterbury sequence, which began with the M7.1 

Darfield earthquake of 3 September 2010 (UTC), albeit with an input catalog that was 

incomplete, especially following large earthquakes. For example, there were six M ≥ 3.95 

aftershocks within 24 hours of the Darfield earthquake in the real-time catalog. This 

increased to 20 when all aftershocks were processed about 18 months later (Christophersen et 

al. 2013)  

 

FIVE-YEAR MODELS 

Five-year models were supplied to the testing center as fixed forecasts, similar to the 

Regional Earthquake Likelihood Models (RELM) experiment in California (Schorlemmer 

and Gerstenberger, 2007). The target earthquakes are those with magnitude M ≥ 4.95 and 

hypocentral depth h ≤ 40 km. There are two 5-year model classes – for “all earthquakes” and 
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“mainshocks only”, respectively. The latter set of target earthquakes is obtained by 

declustering the whole catalog for magnitude M ≥ 1.95 using the Reasenberg (1985) 

algorithm with standard parameter settings (Gerstenberger and Rhoades 2010) and then 

restricting the declustered catalog to M ≥ 4.95.  

There are five models in the 5-year classes (Table 1): a gridded version of the New Zealand 

national seismic hazard model (NZHM; Stirling et al. 2002), including both fault sources and 

distributed seismicity, a smoothed seismicity model based on proximity to past earthquakes 

(PPE; Jackson and Kagan, 1999; Rhoades and Evison, 2004) fitted to data up to the end of 

2006, a version of PPE to be assessed against mainshocks only (PPE_DEC), a spatially 

uniform Poisson model (SUP) fitted to the test region up to the end of 2006 and included as a 

model of least information, and a version of SUP to be assessed against mainshocks only 

(SUP_DEC). The NZHM model was designed to forecast mainshocks only, but for reference 

purposes we include it in both classes. Spatial plots of models in the 5-year classes are given 

in Figure S1 of the electronic supplement. We analyse the performance of the models from 

2008 Jan 1 to 2017 Dec 31, using the target events with magnitudes M ≥ 4.95 from the 

finalised CUSP catalog and the SC3 catalog to 2017. The complete target catalog has 235 

events and the declustered catalog has 49 “mainshocks” (Figure 1). The declustered catalog is 

listed in the electronic supplement (Table S1). 

 

In the “all earthquakes” class, all models grossly under-predicted the number of target 

earthquakes in the test period, which had a much higher level of seismicity than in any period 

since at least the 1950s. Consistency of the models with the total number of target 

earthquakes is measured in CSEP by the N-test (Schorlemmer et al., 2007). All models failed 

the N-test with Poisson 95% confidence limits by a wide margin (Figure 2a), with 

vanishingly small p-values. This result is as much a reflection of the inadequacy of the 
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Poisson assumption as of the models themselves. The information gain of one model over 

another, taking into account the relative expected numbers of the models in spatial cells and 

magnitude bins (and time periods, if updating is involved) to which the target earthquakes 

belong, is measured in CSEP by the T-test (Rhoades et al. 2011). According to the T-test, the 

PPE model performed significantly better than SUP with an information gain (per 

earthquake) of 0.22 ± 0.12 (95% confidence limits). The information gain (IG) is related to 

the probability gain (PG) by IG = ln(PG). Therefore, for this example, the probability gain is 

only 1.24.  The SUP model in turn outperformed the NZHM model with an information gain 

of 0.35±0.11 (Figure 2b). The latter result may be attributed partly to the low expected 

number of earthquakes associated with NZHM as a mainshocks-only model and partly to the 

effect of the Canterbury earthquakes. 

 

The Canterbury earthquakes, which contributed 54 earthquakes to the target set of all events 

with M ≥4.95 up to 2012, occurred in a region of previously low seismicity, not close to 

modelled faults with high slip rates. When the 10-year test period is split into two five-year 

periods, the information gain of SUP over NZHM is higher in the first period (2008-2012), 

which included the Canterbury earthquakes, than in the second (2013-2017), about 0.7 versus 

-0.05 (Figure 3).   

 

In the “mainshocks only” class, all models passed the N-test at the Poisson 95% significance 

level (Figure 4a). The T-test shows that PPE_DEC was the best performing model, with an 

information gain of about 0.4 over NZHM and about 0.75 over SUP_DEC (Figure 4b).  

 

THREE-MONTH MODELS  
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Processing of three-month models commenced in May 2009, with the first quarterly forecasts 

being produced in July 2009. The target earthquakes are all events with magnitude M ≥ 4.95 

and hypocentral depth h ≤ 40 km. Because this class is designed for medium-term and not 

short-term models, the models in this class were provided with an input catalog  (M ≥ 2.95) 

that terminated one month before the start of each test period. The three-month models (Table 

2) include five versions of the “Every Earthquake a Precursor According to Scale” (EEPAS) 

model (Rhoades and Evison, 2004, 2005, 2006) based on the precursory scale increase 

phenomonen (Evison and Rhoades, 2002, 2004), the PPE model updated at each forecast 

period, and the “Double Branching Model” (DBM; Marzocchi and Lombardi, 2008). For 

reference purposes, we also include the SUP model, scaled down from the five-year model, in 

this class. 

 

Four versions of the EEPAS model as originally proposed are included. These are denoted 

EEPAS-0R, EEPAS-0F, EEPAS-1R and EEPAS-1F, where “0” indicates equal weighting of 

all earthquakes in the input catalog, “1” indicates down-weighting of aftershocks, “R” 

indicates a restricted set of only four parameters were fitted and “F” indicates a fuller set of 

six parameters were fitted. The experiment was thus an opportunity to evaluate the relative 

worth of two different weighting strategies and two different fitting strategies (Rhoades, 

Gerstenberger et al., 2008).  Additionally, an earthquake-rate dependent EEPAS-0F model 

(ERDEEP) is included, in which the scaling parameters for precursor time and area depend 

on the local seismicity rate, as estimated by the PPE model. This variant of the EEPAS model 

was described by Rhoades et al. (2010).  

 

The three-month models all significantly under-estimate the number of target earthquakes in 

the total test interval (Figure 5a). This underprediction is consistent with the fact that a high 
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proportion of the target earthquakes occurred as aftershocks of larger events. Except for the 

DBM model, these models make no attempt to forecast the Omori-Utsu decay of aftershocks 

and, with the gap between the end of the input catalog and the start of each test period, have 

little opportunity do so anyway. 

 

The T-test shows EEPAS-0F to be the best-performing model in the total test interval (Figure 

5b). The same model was the best performing model in a similar analysis of 3-month models 

in the CSEP California testing center (Schneider et al., 2014). Again, there are differences in 

relative model performance within the test period. Up to the end of 2012, DBM was 

marginally the most informative model and none of the EEPAS models significantly 

outperformed PPE (Figure 6a). However, from 2013 on, all of the EEPAS models 

significantly outperformed DBM and PPE (Figure 6b) with information gains over PPE of 

about 0.6. Again, the results up to the 2012 are strongly affected by the Canterbury 

earthquake sequence. Numerous large aftershocks more than three months after the initiating 

Darfield earthquake provided an opportunity, from the beginning of 2011 on for the DBM 

model, which includes Omori-Utsu aftershock decay, to perform well, and for the PPE model 

to incorporate the early Darfield aftershocks. In contrast, the EEPAS models benefited less 

from the early aftershocks, because their response to any new earthquake begins only 

gradually and peaks several months or years later, depending on its magnitude. Selected 

spatial plots of the 3-month models are given in Figures S2-S4 of the electronic supplement. 

 

ONE-DAY-MODELS 

Major aftershock sequences that occurred during the past decade provide an opportunity to 

examine the performance of the one-day models in the conditions under which aftershock 

models are expected to perform best. The target earthquakes for one-day testing are the 
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events with M ≥ 3.95 and h ≤ 40 km.  The one-day models (Table 3) include the Short-Term 

Earthquake Probabilities (STEP) model (Gerstenberger et al. 2004, 2005), a variation of 

STEP incorporating a revised estimation of aftershock abundance (STEP_ABU; 

Christophersen and Gerstenberger, 2010), and an Epidemic Type Aftershock (ETAS) model 

(Ogata, 1988, 1998). The installed version of ETAS was described by Rhoades (2013) and 

Rhoades, Gerstenberger et al. (2008). A version of PPE with daily updating (PPE_1d) is also 

installed as a reference model with no Omori-type aftershock behaviour. We present results 

for two periods of intense aftershock activity: six months starting the first day after the M7.1 

Darfield earthquake of 2010 Sep 3 (the Canterbury earthquakes), and three months starting 

the first day after the M7.8 Kaikōura earthquake of 2016 Nov 13. The Canterbury results 

were obtained in near real-time testing, with a one-month delay in processing; the Kaikōura 

results are based on the best catalog available in December 2017. No results for the STEP or 

STEP_ABU models are presented in the Canterbury results, because of a problem with the 

installation of these models at that time. Irregularities still affected these models at the time of 

the Kaikōura aftershocks. First, the forecasts were computed only for magnitudes M ≥ 4.95. 

However, since these models follow the Gutenberg-Richter relation (Gutenberg and Richter, 

1944) in each spatial cell, this has been corrected by post-processing to extend the forecasts 

down to M ≥ 3.95. Secondly, the background has lower rates than NZHM, which is the 

intended background model. (c.f. Figures S1, S5 and S6 of the electronic supplement). We 

calculate and test a modified model, STEP_MOD, in which the cells with lower rates than 

NZHM are replaced by the rates of the NZHM model, to measure the effect of the low 

background on the performance. 

 

The probability gain of aftershock models over long-term smoothed seismicity models is of 

interest. Therefore, we have included as additional reference models in the one-day tests the 
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stationary five-year PPE model and the PPE model with 3month updating, with expected 

numbers scaled down to one-day (PPE_5y and PPE_3m, respectively). For the Kaikōura 

tests, these models, which conform to the Gutenberg-Richter relation, have also been 

extended down to M ≥ 3.95. 

 

In the case of Canterbury, the ETAS model passed the N-test. The PPE reference models 

under-estimated the number of target events, as expected (Figure 7a). The information gain of 

the ETAS model is about 4.5 relative to the PPE_1d model (Figure 7b) and almost 7 relative 

to PPE_5y. The latter value corresponds to a probability gain of approaching 1000. In the 

case of Kaikōura, the forecasts of STEP and STEP_ABU were identical, and therefore only 

the STEP model is presented. The STEP and STEP_MOD models overestimated the number 

of target earthquakes by a factor of about three and the ETAS model by about 20 percent 

(Figure 8a). The information gain of the ETAS model is about 4 relative to the PPE-1d model 

and about 6 relative to the PPE_5y model (Figure 8b). The latter value corresponds to a 

probability gain of about 400. A lower information gain for Kaikōura than for Canterbury is 

to be expected, because the Canterbury earthquakes occurred in a region of previously low 

seismicity and the Kaikōura earthquake and its aftershocks occurred in a region of previously 

high seismicity. Figure 8 shows that there is very little difference in the performance of the 

STEP and STEP_MOD models, because of the small number of target events in the 

background area during the period analysed. 

 

DISCUSSION 

The inconsistent results of the five-year and three-month models in different sub-periods 

shows that results obtained for one period, even when supported by many target events, will 

not necessarily be repeated in other periods, owing to the non-stationarity of the earthquake-
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generating process. As with any CSEP test, the results are specific to the time period 

examined and can be considered only indicative of how the models might perform in other 

time periods. For this reason, care must be taken in interpreting the results and greater 

confidence can be placed in model comparisons that are confirmed by consistent results over 

multiple time-periods and multiple regions. 

 

Recent research helps to explain the relatively poor performance of the EEPAS models 

during the Canterbury earthquakes. Unlike most major earthquakes, the Darfield earthquake 

does not have a precursory scale increase in the instrumental catalog. A study using the 

physics-based earthquake simulator RSQSim indicates that, given the low strain rate in the 

Canterbury area, a precursor time much longer than the existing instrumental catalog would 

be expected for the Darfield earthquake (Christophersen et al. 2017). The present formulation 

of the EEPAS model does not allow for this effect of low strain rate.   

 

Better long-term models than those currently installed in the testing center as five-year 

models have been developed and tested retrospectively during the past decade, but not yet 

installed in the CSEP testing center. These are hybrid models that combine data on past 

earthquake occurrence, fault locations with associated slip rates, and strain rates. Rhoades 

and Stirling (2011) showed that an additive mixture of PPE with an earthquake likelihood 

model (PMF), based on proximity to mapped faults weighted by slip rate, produced an 

information gain over PPE of about 0.1 over a test period from 1997-2006. Rhoades et al. 

(2015) showed that a multiplicative hybrid involving multiple fault and earthquake covariates 

had an information gain of 0.05 – 0.2 over PPE, with somewhat smaller gains when the PPE 

model is updated to the start of the test period. Rhoades et al. (2017) showed that when shear 



 

12 
 

strain is added to the pool of covariates contributing to a multiplicative hybrid, the 

information gain is further increased by about 0.3 for the 2012-2015 test period. 

 

The performance of the various versions of PPE as reference models for one-day testing 

shows that smoothed seismicity models perform much better when recently updated. For 

example, the information gain of the three-month PPE model over SUP was 0.75 (Figure 5b), 

larger than that of the five-year PPE model over SUP, which was 0.22 (Figure 6b); and the 

information gains of the PPE_1d over PPE_3m during the Darfield and Kaikōura aftershock 

sequences were 1.2 and 0.8 respectively (Figures 7b and 8b). The dependence of performance 

on recent updating is a natural consequence of earthquake clustering on a range of timescales. 

It is a factor to be considered when developing earthquake source models for long-term 

seismic hazard and a risk studies. 

 

The information gain of PPE over NZHM is somewhat surprising, given that NZHM includes 

information on both faults and earthquakes. However, the two models used different 

selections of data from the earthquake catalog and different smoothing methods. Also, 

NZHM was designed with time-periods of many decades in mind; the tests conducted here do 

not show how it would perform over very long periods. The information gain of SUP over the 

NZHM in the all-earthquakes class can be attributed mainly to the fact that NZHM was 

designed to forecast mainshocks only. Nevertheless, the occurrence of the disastrous M6.2 

Christchurch earthquake of 2011 Feb 22, the largest aftershock so far of the Darfield 

earthquake, made it clear that a time-invariant model that aims to forecast mainshocks only is 

not likely to perform well in estimating seismic hazard over the next few decades in 

Canterbury. Consequently, in the wake of the Christchurch earthquake, there was a demand 

for a new seismic hazard model for Canterbury for the next 50 years. The earthquake source 
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model had to allow for time-varying earthquake occurrence and to cover timescales up to 50 

years, to support decision-making for the recovery of Christchurch (Gerstenberger et al. 

2014).  

 

CSEP models provided a valuable resource for the construction of the new Canterbury source 

model.  The models already installed in the testing center became useful building blocks for a 

hybrid model for forecasts on all required timescales. A time-varying component was defined 

as a mixture of time-varying models (STEP, ETAS and versions of EEPAS), and a long-term 

component was defined as a mixture of smoothed seismicity models with a variety of data 

selections and smoothing methods. The mixture weights were assessed by expert elicitation. 

The hybrid was defined as the maximum of the time-varying and long-term components in 

each spatial cell and magnitude bin, as in the definition of the STEP model (Gerstenberger, 

2005; Gerstenberger et al., 2014, 2016). 

 

Testing of the Canterbury earthquake source model was undertaken in the New Zealand 

Testing Center. A retrospective experiment was carried out in which the hybrid model was 

compared with component models in a series of one-year forecasts with lags up to 25 years. 

The experiment confirmed that hybrid model outperformed all, or nearly all, of its 

components at all time-lags (Rhoades et al. 2016).  

 

A 100-year hazard model for central New Zealand was developed following the Kaikōura 

earthquake for planning of road and rail reconstruction, using a hybrid source model with a 

similar form, but with two differences: the hybrid is defined as the maximum of three 

components (short-term, medium-term and long-term), and the long-term component 

includes a contribution from a multiplicative hybrid incorporating strain rates.  
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Studies of hybrid models in New Zealand and elsewhere (Rhoades and Gerstenberger, 2009; 

Rhoades and Stirling, 2012; Marzocchi et al. 2012; Taroni et al. 2013; Rhoades, 2013; Steacy 

et al. 2014; Rhoades et al., 2014, 2015, 2016, 2017) indicate that hybrid forecasting models 

can usually outperform individual models that are based on restricted assumptions and data. 

CSEP’s initial emphasis has been on testing the consistency and information value of 

individual models. However, for practical forecasting, it may be more useful to test whether a 

new model or data stream can be combined with existing models into a more informative 

hybrid model. This suggests that CSEP should extend its formal testing procedures to hybrid 

models. 

 

CONCLUSION 

The occurrence of an unusually large number of earthquakes in New Zealand over the past 

decade has been helpful for testing of CSEP models, especially in the one-day class. One-day 

model testing showed that the ETAS model gave probability gains of 400 to 1000 over a 

long-term PPE model during the Kaikōura and Darfield Aftershock sequences. Three-month 

model testing showed that the best-performing EEPAS model gave an information gain of 0.5 

over PPE. The PPE smoothed seismicity model outperformed the NZHM model over ten 

years of testing. Concurrent research suggests that long-term earthquake source models can 

be improved by combining earthquake and fault data in different ways than they have 

traditionally been combined, and by the incorporation of strain rates. The performance of 

smoothed seismicity models is strongly improved by regular updating.  CSEP models were a 

valuable resource for the development of practical time-varying hybrid forecasting models in 

the wake of the Canterbury and Kaikōura earthquakes. Tests of hybrid models inside and 

outside the testing center indicate that hybrid models usually outperform simpler models. 
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How best to construct and test hybrid forecasting models is an important problem for CSEP 

in the future. 

 

DATA AND RESOURCES 

The New Zealand Earthquake Forecast Testing Center depends on data provided by GeoNet 

at http://www.geonet.org.nz, and in particular on  the GeoNet earthquake catalog at 

http://wfs.geonet.org.nz, last accessed January 2018. 
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TABLES 

Table 1: Overview of five-year models with no updating during the testing period. 

Model Target 

earthquakes 

Description  Features Reference 

SUP All Stationary Uniform 

Poisson 

Gutenberg-Richter (G-R) 

magnitude distribution 

Rhoades & 

Evison, 2004 

SUP_DEC Mainshocks As above As above As above 

PPE, 

PPE_5y 

All Proximity to past 

earthquakes 

Inverse power-law smoothing 

with magnitude weighting; 

G-R magnitude distribution 

Jackson & Kagan, 

1999; Rhoades & 

Evison, 2004  

PPE_DEC Mainshocks As above As above As above 

NZHM Mainshocks Earthquake source 

model of National 

Seismic Hazard Model 

Characteristic earthquakes on 

faults and smoothed 

seismicity background 

Stirling et al., 

2002 
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Table 2: Overview of models with three-month updating 

Model  Description Features Reference 

DBM Double-branching 

model 

Omori-Utsu aftershock decay and 

longer-term exponential decay. 

Marzocchi & 

Lombardi, 2008 

EEPAS-0F Every earthquake a 

precursor according 

to scale 

Precursory scale increase (ψ) 

predictive scaling relations; equal 

weighting, eight fitted parameters 

Evison & Rhoades, 

2004; Rhoades & 

Evison, 2004, 2005, 

2006  

EEPAS-0R As above ψ predictive scaling relations; equal 

weighting, four fitted parameters  

As above 

EEPAS-1F As above ψ predictive scaling relations; 

aftershocks down-weighted, eight 

fitted parameters 

As above 

EEPAS-1R As above ψ predictive scaling relations; 

aftershocks down-weighted, four 

fitted parameters 

As above 

ERDEEP Earthquake rate 

dependent EEPAS 

ψ predictive scaling relations; equal 

weighting, eight fitted parameters 

Rhoades et al., 2010 

PPE, 

PPE_3m 

Proximity to past 

earthquakes 

See Table 1 See Table 1 
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Table 3: Overview of models with daily updating 

Model  Description Features Reference 

ETAS Epidemic type aftershock 

sequence model 

Omori-Utsu aftershock 

decay following every 

earthquake 

Ogata, 1988, 1998; 

Rhoades, 2013 

STEP Short-term earthquake 

probability model 

Superimposed Omori-Utsu 

aftershock decay sequences 

Gerstenberger et al, 

2004, 2005 

STEP_ABU STEP with adjustment for low 

numbers of aftershocks 

as above Christophersen & 

Gerstenberger, 2010 

STEP_MOD Modified STEP model NZHM in background See text 

PPE_1d Proximity to past earthquakes See Table 1 See Table 1 
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CAPTIONS FOR FIGURES 

 

Figure 1. Map of New Zealand showing test region (dotted polygon), search region for input 

catalog (dashed polygon) and epicenters of target earthquakes with M ≥ 4.95 over the period 

2008 Jan 1 to 2017 Dec 31 (235 events), classified as mainshocks (49 events) or aftershocks 

according to Reasenberg declustering. 

 

Figure 2. Tests of five-year models targeting all earthquakes with M ≥ 4.95, for the period 

2008 Jan 1 to 2017 Dec 31. (a) N-tests comparing the actual number of target earthquakes 

(dashed line) with the expected number and its 95% confidence limits for each model under 

the Poisson assumption. (b) T-tests showing the information gain of other models and 95% 

confidence limits relative to the SUP model. The number of target earthquakes contributing 

to each comparison is also shown. For other T-test comparisons, see Table S2 of the 

electronic supplement. 

 

Figure 3. T-tests of five-year models targeting all earthquakes with M > 4.95. (a) For the 

period 2008 Jan 1 to 2012 Dec 31, relative to NZHM; (b) For the period 2013 Jan 1 to 2017 

Dec 31, relative to SUP.  See caption of Figure 2 for more explanation. For other T-test 

comparisons, see Tables S3 and S4 of the electronic supplement. 

 

Figure 4. Tests of five-year models targeting mainshocks only with M ≥ 4.95, for the period 

2008 Jan 1 to 2017 Dec 31. (a) N-tests.  (b) T-tests relative to the NZHM model. See caption 

of Figure 2 for more explanation. For other T-test comparisons, see Table S5 of the electronic 

supplement. 
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Figure 5. Tests of three-year models targeting all earthquakes with M ≥ 4.95, for the period 

2009 Jul 1 to 2017 Sep 30. (a) N-tests.  (b) T-tests relative to the PPE model. See caption of 

Figure 2 for more explanation. For other T-test comparisons, see Table S6 of the electronic 

supplement. 

 

Figure 6. T-tests of three-month models targeting all earthquakes with M ≥ 4.95, relative to 

PPE. (a) For the period 2009 Jul 1 to 2012 Dec 31; (b) For the period 2013 Jan 1 to 2017 Sep 

30. See caption of Figure 2 for more explanation. For other T-test comparisons, see Tables S7 

and S8 of the electronic supplement. 

 

Figure 7. Tests of one-day models targeting earthquakes with M ≥ 3.95 and PPE models 

from the three-month and five-year classes (targeting earthquakes with M > 4.95) during the 

first six months of aftershocks of the Darfield earthquake from 2010 Sep 4 to 2012 Mar 8. (a) 

N-tests; (b) T-tests relative to PPE_1d. See caption of Figure 2 for more explanation. For 

other T-test comparisons, see Table S9 of the electronic supplement. 

 

Figure 8. Tests of one-day models targeting all earthquakes with M ≥ 3.95 during the first 

three months of aftershocks of the Kaikōura earthquake, from 2016 Nov 14 to 2017 Feb 13. 

(a) N-tests; (b) T-tests relative to PPE_1d. See caption of Figure 2 for more explanation. For 

all T-test comparisons in this class, see Table S10 of the electronic supplement. 
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FIGURES 

 

Figure 1. Map of New Zealand showing test region (dotted polygon), search region for input 

catalog (dashed polygon) and epicenters of target earthquakes with M ≥ 4.95 over the period 

2008 Jan 1 to 2017 Dec 31 (235 events), classified as mainshocks (49 events) or aftershocks 

according to Reasenberg declustering.  
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Figure 4. Tests of five-year models targeting mainshocks only with M ≥ 4.95, for the period 

2008 Jan 1 to 2017 Dec 31. (a) N-tests.  (b) T-tests relative to the NZHM model. See caption 

of Figure 2 for more explanation. For other T-test comparisons, see Table S5 of the electronic 

supplement. 
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Figure 6. T-tests of three-month models targeting all earthquakes with M ≥ 4.95, relative to 

PPE. (a) For the period 2009 Jul 1 to 2012 Dec 31; (b) For the period 2013 Jan 1 to 2017 Sep 

30. See caption of Figure 2 for more explanation. For other T-test comparisons, see Tables S7 

and S8 of the electronic supplement. 

 

 

 

Figure 7. Tests of one-day models targeting earthquakes with M ≥ 3.95 and PPE models 

from the three-month and five-year classes (targeting earthquakes with M > 4.95) during the 

first six months of aftershocks of the Darfield earthquake from 2010 Sep 4 to 2012 Mar 8. (a) 

N-tests; (b) T-tests relative to PPE_1d. See caption of Figure 2 for more explanation. For 

other T-test comparisons, see Table S9 of the electronic supplement. 
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Figure 8. Tests of one-day models targeting all earthquakes with M ≥ 3.95 during the first 

three months of aftershocks of the Kaikōura earthquake, from 2016 Nov 14 to 2017 Feb 13. 

(a) N-tests; (b) T-tests relative to PPE_1d. See caption of Figure 2 for more explanation. For 

all T-test comparisons in this class, see Table S10 of the electronic supplement. 

 


