45 research outputs found

    A 2-year intercomparison of three methods for measuring black carbon concentration at a high-altitude research station in Europe

    Get PDF
    Black carbon (BC) is one of the most important climate forcers with severe health effects. Large uncertainties in radiative forcing estimation and health impact assessment arise from the fact that there is no standardized method to measure BC mass concentration. This study presents a 2-year comparison of three state-of-the-art BC measurement techniques at the high-altitude research station Pic du Midi (PDM) located in the French Pyrenees at an altitude of 2877 m above sea level. A recently upgraded Aethalometer AE33, a thermal-optical analyser Sunset and a single-particle soot photometer SP2 were deployed to measure simultaneously the mass concentration of equivalent black carbon (MeBC), elemental carbon (MEC) and refractory black carbon (MrBC), respectively. Significant deviations in the response of the instruments were observed. All techniques responded to seasonal variations in the atmospheric changes in BC levels and exhibited good correlation during the whole study period. This indicates that the different instruments quantified the same particle type despite the fact that they are based on different physical principles. However the slopes and correlation coefficients varied between instrument pairs. The largest biases were observed for the AE33 with MeBC values that were around 2 times greater than MrBC and MEC values. The principal reasons of such large discrepancy were explained by the mass absorption cross section (MAC) that was too low and C values recommended by the AE33 manufacturer and applied to the absorption coefficients measured by the AE33. In addition, the long-range transport of dust particles at PDM in spring caused significant increases in the bias between AE33 and SP2 by up to a factor 8. The Sunset MEC measurements agreed within around 17 % with the SP2 MrBC values. The largest overestimations of MEC were observed when the total carbon concentrations were below 25 ”g C cm−2, which is probably linked to the incorrect determination of the organic carbon (OC)–EC split point. Another cause of the discrepancy between instruments was found to be the limited detection range of the SP2, which did not allow for the total detection of fine rBC particles. The procedure used to estimate the missing mass fraction of rBC not covered by the measurement range of the SP2 was found to be critical. We found that a time-dependent correction based on fitting the observed rBC size distribution with a multimodal lognormal distribution is needed to accurately estimate MrBC over a larger size range.</p

    Updated African biomass burning emission inventories in the framework of the AMMA-IDAF program, with an evaluation of combustion aerosols

    Get PDF
    African biomass burning emission inventories for gaseous and particulate species have been constructed at a resolution of 1 km by 1km with daily coverage for the 2000–2007 period. These inventories are higher than the GFED2 inventories, which are currently widely in use. Evaluation specifically focusing on combustion aerosol has been carried out with the ORISAM-TM4 global chemistry transport model which includes a detailed aerosol module. This paper compares modeled results with measurements of surface BC concentrations and scattering coefficients from the AMMA Enhanced Observations period, aerosol optical depths and single scattering albedo from AERONET sunphotometers, LIDAR vertical distributions of extinction coefficients as well as satellite data. Aerosol seasonal and interannual evolutions over the 2004–2007 period observed at regional scale and more specifically at the Djougou (Benin) and Banizoumbou (Niger) AMMA/IDAF sites are well reproduced by our global model, indicating that our biomass burning emission inventory appears reasonable

    Trends and seasonal variability in ammonia across major biomes in western and central Africa inferred from long-term series of ground-based and satellite measurements

    Get PDF
    Ammonia (NH3) is the most abundant alkaline component in the atmosphere. Changes in NH3 concentrations have important implications for atmospheric chemistry, air quality, and ecosystem integrity. We present a long-term ammonia (NH3) assessment in the western and central African regions within the framework of the International Network to study Deposition and Atmospheric chemistry in Africa (INDAAF) programme. We analyse seasonal variations and trends in NH3 concentrations and total column densities along an African ecosystem transect spanning dry savannas in Banizoumbou, Niger, and Katibougou, Mali; wet savannas in Djougou, Benin, and Lamto, CĂŽte d'Ivoire; and forests in Bomassa, Republic of the Congo, and ZoĂ©tĂ©lĂ©, Cameroon. We use a 21-year record of observations (1998–2018) from INDAAF passive samplers and an 11-year record of observations (2008–2018) of atmospheric vertical column densities from the Infrared Atmospheric Sounding Interferometer (IASI) to evaluate NH3 ground-based concentrations and total column densities, respectively. Climatic data (air temperature, rainfall amount, and leaf area index), as well as ammonia emission data of biomass combustion from the fourth version of the Global Fire Emissions Database (GFED4) and anthropogenic sources from the Community Emissions Data System (CEDS), were compared with total NH3 concentrations and total columns over the same periods. Annual mean ground-based NH3 concentrations are around 5.7–5.8 ppb in dry savannas, 3.5–4.7 ppb in wet savannas, and 3.4–5.6 ppb in forests. Annual IASI NH3 total column densities are 10.0–10.7 × 1015 molec. cm−2 in dry savanna, 16.0–20.9 × 1015 molec. cm−2 in wet savanna, and 12.4–13.8 × 1015 molec. cm−2 in forest stations. Non-parametric statistical Mann–Kendall trend tests applied to annual data show that ground-based NH3 concentrations increase at Bomassa (+2.56 % yr−1) but decrease at ZoĂ©tĂ©lĂ© (−2.95 % yr−1) over the 21-year period. The 11-year period of IASI NH3 total column density measurements show yearly increasing trends at Katibougou (+3.46 % yr−1), Djougou (+2.24 % yr−1), and ZoĂ©tĂ©lĂ© (+3.42 % yr−1). From the outcome of our investigation, we conclude that air temperature, leaf area index, and rainfall combined with biomass burning, agricultural, and residential activities are the key drivers of atmospheric NH3 in the INDAAF stations. The results also show that the drivers of trends are (1) agriculture in the dry savanna of Katibougou; (2) air temperature and agriculture in the wet savanna of Djougou and Lamto; and (3) leaf area index, air temperature, residential, and agriculture in the forest of Bomassa.</p

    Personal exposure to PM<sub>2.5</sub> emitted from typical anthropogenic sources in southern West Africa: chemical characteristics and associated health risks

    Get PDF
    Urbanization is an issue that is strongly emerging in southern West Africa (sWA). There is a lack of full understanding on chemical compositions and personal exposure levels to fine particulate matter (hereafter defined as PE PM2.5) and its health risks related to various anthropogenic sources in this region. In this study, PE PM2.5 was studied in dry (January) and wet (July) seasons of 2016 for the first time to characterize the contributions of a domestic fire site (DF) to the exposure of women and a waste burning site (WB) to that of students in Abidjan, CĂŽte d'Ivoire, and a motorcycle traffic site (MT) to that of drivers in Cotonou, Benin. The average PE PM2.5 mass concentrations were 331.7±190.7, 356.9±71.9 and 242.8±67.6&thinsp;”g&thinsp;m−3 at DF, WB and MT sites for women, students and drivers, which were 2.4, 10.3 and 6.4 times the ambient PM2.5 concentrations, respectively. Elevated PE PM2.5 levels in the dry season were found at DF (358.8±100.5&thinsp;”g&thinsp;m−3), WB (494.3±15.8&thinsp;”g&thinsp;m−3) and MT (335.1±72.1&thinsp;”g&thinsp;m−3) sites, on average 15&thinsp;% higher than that at DF and 55&thinsp;% higher at both WB and MT sites in the wet season. The seasonal variations were attributed to emission sources, meteorological factors and personal activities. In addition, the results show that geological material (35.8&thinsp;%, 46.0&thinsp;% and 42.4&thinsp;%) and organic matter (34.1&thinsp;%, 23.3&thinsp;% and 24.9&thinsp;%) were the major components of PE PM2.5 at DF, WB and MT sites. It is worth noting that the contribution of heavy metals was higher at WB (1.0&thinsp;%) than at DF (0.7&thinsp;%) and MT (0.4&thinsp;%) sites, strongly influenced by waste burning emission. This results in the highest non-cancer risks of heavy metals to students, 5.1 and 4.8 times the values for women and drivers, respectively. By conducting organic speciation, fingerprints were used to access the exposure and identify the source contributions from typical local anthropogenic sources. The women's exposure concentration to particulate polycyclic aromatic hydrocarbons (PAHs) at DF (77.4±47.9&thinsp;ng&thinsp;m−3) was 1.6 and 2.1 times, respectively, that of students at WB (49.9±30.7&thinsp;ng&thinsp;m−3) and of drivers at MT (37.0±7.4&thinsp;ng&thinsp;m−3). This can be associated with the higher contributions from solid fuels' burning and meat grilling activities to women, resulting in a level 5 times in exceedance of the cancer risk safety threshold (1×10-6). Phthalate esters (PAEs), commonly used as plasticizers in products, were in high levels in the student exposure PM2.5 samples (1380.4±335.2&thinsp;ng&thinsp;m−3), owing to obvious waste burning activities nearby. The drivers' exposures to fossil fuel combustion markers of hopanes in PE PM2.5 at MT (50.9±7.9&thinsp;ng&thinsp;m−3) was 3.0–3.3 times those for women at DF (17.1±6.4&thinsp;ng&thinsp;m−3) and students at WB (15.6±6.1&thinsp;ng&thinsp;m−3). Overall, the current study shows that wood combustion, waste burning, fugitive dust and motor vehicle emissions were the dominant sources of PE PM2.5 and mainly contributed to its toxicities. The exposure to the heavy metals Pb and Mn caused high non-cancer risks to students at WB, while the severe cancer risk of PAHs was found for women at DF via inhalation. The result of this study provides original data, initial perspective of PM2.5 personal exposure and health risk assessment in the developing areas. The information encourages the governments to improve the air quality and living standards of residents in this region.</p

    Ab Initio Screening Approach for the Discovery of Lignin Polymer Breaking Pathways

    Get PDF
    The directed depolymerization of lignin biopolymers is of utmost relevance for the valorization or commercialization of biomass fuels. We present a computational and theoretical screening approach to identify potential cleavage pathways and resulting fragments that are formed during depolymerization of lignin oligomers containing two to six monomers. We have developed a chemical discovery technique to identify the chemically relevant putative fragments in eight known polymeric linkage types of lignin. Obtaining these structures is a crucial precursor to the development of any further kinetic modeling. We have developed this approach by adapting steered molecular dynamics calculations under constant force and varying the points of applied force in the molecule to diversify the screening approach. Key observations include relationships between abundance and breaking frequency, the relative diversity of potential pathways for a given linkage, and the observation that readily cleaved bonds can destabilize adjacent bonds, causing subsequent automatic cleavage.Massachusetts Institute of Technology (Research Support Corporation, Reed Grant)United States. Dept. of Energy. Computational Science Graduate Fellowship Program (DOE-CSGF)Burroughs Wellcome Fund (Career Award at the Scientific Interface

    Biobased composites from glyoxal-phenolic resins and sisal fibers

    No full text
    Lignocellulosic materials can significantly contribute to the development of biobased composites. In this work, glyoxal-phenolic resins for composites were prepared using glyoxal, which is a dialdehyde obtained from several natural resources. The resins were characterized by (1)H, (13)C, (2)D, and (31)P NMR spectroscopies. Resorcinol (10%) was used as an accelerator for curing the glyoxal-phenol resins in order to obtain the thermosets. The impact-strength measurement showed that regardless of the cure cycle used, the reinforcement of thermosets by 30% (w/w) sisal fibers improved the impact strength by one order of magnitude. Curing with cycle 1 (150 degrees C) induced a high diffusion coefficient for water absorption in composites, due to less interaction between the sisal fibers and water. The composites cured with cycle 2 (180 degrees C) had less glyoxal resin coverage of the cellulosic fibers, as observed by images of the fractured interface observed by SEM. This study shows that biobased composites with good properties can be prepared using a high proportion of materials obtained from natural resources

    Biocompósitos de matriz glioxal-fenol reforçada com celulose microcristalina Biobased composites from glyoxal-phenol matrices reinforced with microcrystalline cellulose

    No full text
    Glioxal pode ser obtido a partir de biomassa (como da oxidação de lipĂ­deos) e nĂŁo Ă© tĂłxico ou volĂĄtil, tendo sido por isso utilizado no presente trabalho como substituto de formaldeĂ­do na preparação de resina fenĂłlica do tipo novolaca, sendo usado como catalisador o ĂĄcido oxĂĄlico, que tambĂ©m pode ser obtido de fontes renovĂĄveis. A resina glioxal-fenol foi utilizada na preparação de compĂłsitos reforçados com celulose microcristalina (CM, 30, 50 e 70% em massa), uma celulose com elevada ĂĄrea superficial. As imagens de microscopia eletrĂŽnica de varredura (MEV) das superfĂ­cies fraturadas demonstraram que os compĂłsitos apresentaram boa interface reforço/matriz, consequĂȘncia da elevada ĂĄrea superficial da CM e presença de grupos polares (hidroxilas) tanto na matriz como na celulose, o que permitiu a formação de ligaçÔes hidrogĂȘnio, favorecendo a compatibilidade entre ambas. A anĂĄlise tĂ©rmica dinĂąmico-mecĂąnica (DMTA) demonstrou que todos os compĂłsitos apresentaram elevado mĂłdulo de armazenamento Ă  temperatura ambiente. AlĂ©m disso, o compĂłsito reforçado com 30% de CM apresentou baixa absorção de ĂĄgua, comparĂĄvel Ă  do termorrĂ­gido fenĂłlico, que Ă© utilizado em escala industrial. Os resultados demonstraram que compĂłsitos com boas propriedades podem ser preparados usando elevada proporção de materiais obtidos de biomassa.<br>Glyoxal, which can be obtained from biomass (as by lipids oxidation), is non-toxic and non-volatile. It was used as a substitute of formaldehyde, which does not have these properties, in the synthesis of a novolac-type phenolic resin, using oxalic acid as a catalyst, which can also be obtained from renewable sources. The glyoxal-phenol resin was used in the preparation of composites reinforced with microcrystalline cellulose (MCC 30, 50, and 70% w/w). Scanning electron microscopy (SEM) images of the fractured surfaces showed that the composites presented a good reinforcement/matrix interface. This can be attributed to the high surface area of the MCC and also to the presence of polar groups (hydroxyl) in both cellulose and matrix, which allowed the formation of hydrogen bonds, leading to a good adhesion between the components present at the interface. Dynamic mechanical thermoanalysis (DMTA) showed that all of the obtained composites have high storage modulus at room temperature. Moreover, the composite reinforced with 30% of MCC showed the lowest water absorption, almost the same as that of the phenolic thermoset, which is used in industrial applications. The results showed that composites with good properties can be prepared using high proportions of materials obtained from biomass

    Biobased Composites from Glyoxal-Phenol Matrices Reinforced with Microcrystalline Cellulose

    Get PDF
    Glyoxal, which can be obtained from biomass (as by lipids oxidation), is non-toxic and non-volatile. It was used as a substitute of formaldehyde, which does not have these properties, in the synthesis of a novolac-type phenolic resin, using oxalic acid as a catalyst, which can also be obtained from renewable sources. The glyoxal-phenol resin was used in the preparation of composites reinforced with microcrystalline cellulose (MCC 30, 50, and 70% w/w). Scanning electron microscopy (SEM) images of the fractured surfaces showed that the composites presented a good reinforcement/matrix interface. This can be attributed to the high surface area of the MCC and also to the presence of polar groups (hydroxyl) in both cellulose and matrix, which allowed the formation of hydrogen bonds, leading to a good adhesion between the components present at the interface. Dynamic mechanical thermoanalysis (DMTA) showed that all of the obtained composites have high storage modulus at room temperature. Moreover, the composite reinforced with 30% of MCC showed the lowest water absorption, almost the same as that of the phenolic thermoset, which is used in industrial applications. The results showed that composites with good properties can be prepared using high proportions of materials obtained from biomass

    Precipitation chemistry and wet deposition in a remote wet savanna site in West Africa : Djougou (Benin)

    No full text
    In the framework of the IDAF (IGAC/DEBITS/AFrica) international program, this study aims to study the chemical composition of precipitation and associated wet deposition at the rural site of Djougou in Benin, representative of a West and Central African wet savanna. Five hundred and thirty rainfall samples were collected at Djougou, Benin, from July 2005 to December 2009 to provide a unique database. The chemical composition of precipitation was analyzed for inorganic (Ca2+, Mg2+, Na+, NH4+, K+, NO3-, Cl-, SO) and organic (HCOO-, CH3COO-, C2H5COO-, C2O42-) ions, using ion chromatography. The 530 collected rain events represent a total of 5706.1 mm of rainfall compared to the measured pluviometry 6138.9 mm, indicating that the collection efficiency is about 93%. The order of total annual loading rates for soluble cations is NH4+ > Ca2+ > Mg2+ > K+. For soluble anions the order of loading is carbonates > HCOO- > NO3- > CH3COO- > SO42- > Cl- > C2O42- > C2H5COO-. In the wet savanna of Djougou, 86% of the measured pH values range between 4.7 and 5.7 with a median pH of 5.19, corresponding to a VWM (Volume Weighed Mean) H+ concentration of 6.46 mu eq . L-1. This acidity results from a mixture of mineral and organic acids. The annual sea salt contribution was computed for K+, Mg2+, Ca2+ and SO42- and represents 4.2% of K+, 41% of Mg2+, 1.3% of Ca2+, and 7.4% of SO42-. These results show that K+, Ca2+, SO42-, and Mg2+ were mainly of non-marine origin. The marine contribution is estimated at 9%. The results of the chemical composition of rainwater of Djougou indicates that, except for the carbonates, ammonium has the highest VWM concentration (143 mu eq.L-1) and nitrate concentration is 8.2 mu eq.L-1. The distribution of monthly VWM concentration for all ions is computed and shows the highest values during the dry season, comparing to the wet season. Identified nitrogenous compound sources (NOx and NH3) are domestic animals, natural emissions from savanna soils, biomass burning and biofuel combustions. The second highest contribution is the calcium ion (133 mu eq.L-1), characteristic of dust aerosols from terrigenous sources, Calcium contributes up to 46% of the precipitation chemistry in Djougou. Finally, these results are compared to those obtained for other selected African sites representative of other main natural ecosystems: dry savanna and forest. The study of the African ecosystem transect indicates a pH gradient with more acidic pH in the forested ecosystem. Nitrogenous contribution to the chemical composition of rain in Lamto, wet savanna, (24%) is equivalent to the one estimated in Djougou (24%). The last contribution concerns organic acidity, which represents 7% of total ionic content of precipitation at Djougou. The relative particulate contribution PC and the relative gaseous contribution GC are calculated using the mean chemical composition measured in Djougou for the studied period. The comparison with other African sites gives 40% and 43% PC in wet savannas of Lamto (Cote d'Ivoire) and Djougou (Benin) respectively, 20% PC in the equatorial forest of Zoetele (Cameroon) and 80% PC in dry savanna of Banizoumbou (Niger). The results shown here indicate the existence of a North-South gradients of organic, marine, terrigenous and nitrogenous contributions along the transect in West and Central Africa
    corecore