587 research outputs found
Entropy Rate of Diffusion Processes on Complex Networks
The concept of entropy rate for a dynamical process on a graph is introduced.
We study diffusion processes where the node degrees are used as a local
information by the random walkers. We describe analitically and numerically how
the degree heterogeneity and correlations affect the diffusion entropy rate. In
addition, the entropy rate is used to characterize complex networks from the
real world. Our results point out how to design optimal diffusion processes
that maximize the entropy for a given network structure, providing a new
theoretical tool with applications to social, technological and communication
networks.Comment: 4 pages (APS format), 3 figures, 1 tabl
Flow and clogging of a sheep herd passing through a bottleneck
We present an experimental study of a flock passing through a narrow door. Video monitoring of daily routines in a farm has enabled us to collect a sizable amount of data. By measuring the time lapse between the passage of consecutive animals, some features of the flow regime can be assessed. A quantitative definition of clogging is demonstrated based on the passage time statistics. These display broad tails, which can be fitted by power laws with a relatively large exponent. On the other hand, the distribution of burst sizes robustly evidences exponential behavior. Finally, borrowing concepts from granular physics and statistical mechanics, we evaluate the effect of increasing the door size and the performance of an obstacle placed in front of it. The success of these techniques opens new possibilities regarding their eventual extension to the management of human crowds
Effect of obstacle position in the flow of sheep through a narrow door
In a recent work Phys. Rev. E 91, 022808 (2015)PLEEE81539-375510.1103/PhysRevE.91.022808] it was reported that placing an obstacle in front of a gate has a beneficial effect in the flow of sheep through it. Here, we extend such results by implementing three different obstacle positions. We have observed that the flow is improved in two cases, while it worsens in the other one; the last instance happens when the obstacle is too close to the door. In this situation, the outcomes suggest that clogging develops between the doorjamb and the obstacle, contrary to the cases when the obstacle is farther, in which case clogging always occurs at the very door. The effectiveness of the obstacle (a strategy put forward to alleviate clogging in emergency exits) is therefore quite sensitive to its location. In addition, the study of the temporal evolution of the flow rate as the test develops makes evident a steady behavior during the entire duration of the entrance. This result is at odds with recent findings in human evacuation tests where the flow rate varies over time, therefore challenging the fairness of straightforward comparisons between pedestrian behavior and animal experimental observations
Iron overload causes endolysosomal deficits modulated by NAADP-regulated two pore channels and RAB7A
Various neurodegenerative disorders are associated with increased brain iron content. Iron is known to cause oxidative stress, which concomitantly promotes cell death. Whereas endolysosomes are known to serve as intracellular iron storage organelles, the consequences of increased iron on endolysosomal functioning, and effects on cell viability upon modulation of endolysosomal iron release remain largely unknown. Here, we show that increasing intracellular iron causes endolysosomal alterations associated with impaired autophagic clearance of intracellular protein aggregates, increased cytosolic oxidative stress and increased cell death. These effects are subject to regulation by NAADP, a potent second messenger reported to target endolysosomal TPCNs (2-pore channels). Consistent with endolysosomal iron storage, cytosolic iron levels are modulated by NAADP, and increased cytosolic iron is detected when overexpressing active, but not inactive TPCNs, indicating that these channels can modulate endolysosomal iron release. Cell death triggered by altered intralysosomal iron handling is abrogated in the presence of an NAADP antagonist or when inhibiting RAB7A activity. Taken together, our results suggest that increased endolysosomal iron causes cell death associated with increased cytosolic oxidative stress as well as autophagic impairments, and these effects are subject to modulation by endolysosomal ion channel activity in a RAB7A-dependent manner. These data highlight alternative therapeutic strategies for neurodegenerative disorders associated with increased intracellular iron load
Sigma-lognormal modeling of speech
Human movement studies and analyses have been fundamental in many scientific domains, ranging from neuroscience to education, pattern recognition to robotics, health care to sports, and beyond. Previous speech motor models were proposed to understand how speech movement is produced and how the resulting speech varies when some parameters are changed. However, the inverse approach, in which the muscular response parameters and the subject’s age are derived from real continuous speech, is not possible with such models. Instead, in the handwriting field, the kinematic theory of rapid human movements and its associated Sigma-lognormal model have been applied successfully to obtain the muscular response parameters. This work presents a speech kinematics-based model that can be used to study, analyze, and reconstruct complex speech kinematics in a simplified manner. A method based on the kinematic theory of rapid human movements and its associated Sigma-lognormal model are applied to describe and to parameterize the asymptotic impulse response of the neuromuscular networks involved in speech as a response to a neuromotor command. The method used to carry out transformations from formants to a movement observation is also presented. Experiments carried out with the (English) VTR-TIMIT database and the (German) Saarbrucken Voice Database, including people of different ages, with and without laryngeal pathologies, corroborate the link between the extracted parameters and aging, on the one hand, and the proportion between the first and second formants required in applying the kinematic theory of rapid human movements, on the other. The results should drive innovative developments in the modeling and understanding of speech kinematics
Natural pigments and biogas recovery from microalgae grown in wastewater
This study assessed the recovery of natural pigments (phycobiliproteins) and bioenergy (biogas) from microalgae grown in wastewater. A consortium of microalgae, mainly composed by Nostoc, Phormidium, and Geitlerinema, known to have high phycobiliproteins content, was grown in photobioreactors. The growth medium was composed by secondary effluent from a high rate algal pond (HRAP) along with the anaerobic digestion centrate, which aimed to enhance the N/P ratio, given the lack of nutrients in the secondary effluent. Additionally, the centrate is still a challenging anaerobic digestion residue since the high nitrogen concentrations have to be removed before disposal. Removal efficiencies up to 52% of COD, 86% of NH4+-N, and 100% of phosphorus were observed. The biomass composition was monitored over the experimental period in order to ensure stable cyanobacterial dominance in the mixed culture. Phycocyanin and phycoerythrin were extracted from harvested biomass, achieving maximum concentrations of 20.1 and 8.1 mg/g dry weight, respectively. The residual biomass from phycobiliproteins extraction was then used to produce biogas, with final methane yields ranging from 159 to 199 mL CH4/g VS. According to the results, by combining the extraction of pigments and the production of biogas from residual biomass, we would not only obtain high-value compounds, but also more energy (around 5-10% higher), as compared to the single recovery of biogas. The proposed process poses an example of resource recovery from biomass grown in wastewater, moving toward a circular bioeconomy
Scaffolds based on hyaluronan and carbon nanotubes gels
[EN] Physico-chemical and mechanical properties of hyaluronic acid/carbon nanotubes nanohybrids have been correlated with the proportion of inorganic nanophase and the preparation procedure. The mass fraction of -COOH functionalized carbon nanotubes was varied from 0 to 0.05. Hyaluronic acid was crosslinked with divinyl sulfone to improve its stability in aqueous media and allow its handling as a hydrogel. A series of samples was dried by lyophilization to obtain porous scaffolds whereas another was room-dried allowing the collapse of the hybrid structures. The porosity of the former, together with the tighter packing of hyaluronic acid chains, results in a lower water absorption and lower mechanical properties in the swollen state, because of the easier water diffusion. The presence of even a small amount of carbon nanotubes (mass fraction of 0.05) limits even more the swelling of the matrix, owing probably to hybrid interactions. These nanohybrids do not seem to degrade significantly during 14 days in water or enzymatic medium.The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: Contract grant sponsor: Spanish Ministerio de Economia y Competitividad; contract grant numbers: MAT2011-28791-C03-02 and -03.Arnal Pastor, MP.; Tallà -Ferrer, C.; Herrero-Herrero, M.; MartÃnez-Gómez AldaravÃ, A.; Monleón Pradas, M.; Vallés Lluch, A. (2016). Scaffolds based on hyaluronan and carbon nanotubes gels. Journal of Biomaterials Applications. 31(4):534-543. https://doi.org/10.1177/0885328216644535S53454331
Occurrence of antibiotics and bacterial resistance in wastewater and sea water from the Antarctic
The potential presence of introduced antibiotics in the aquatic environment is a hot topic of concern, particularly in the Antarctic, a highly vulnerable area protected under the Madrid protocol. The increasing presence of human population, especially during summer, might led to the appearance of pharmaceuticals in wastewater. The previous discovery of Escherichia coli strains resistant to antibiotics in sea water and wastewater collected in King George Island motivated our investigation on antibiotics occurrence in these samples. The application of a multi-residue LCMS/MS method for 20 antibiotics, revealed the presence of 8 compounds in treated wastewater, mainly the quinolones ciprofloxacin and norfloxacin (92% and 54% of the samples analyzed, average concentrations 0.89 μg/L and 0.75 μg/L, respectively) and the macrolides azithromycin and clarithromycin (15% positive samples, and average concentrations near 0.4 μg/L), and erythromycin (38% positive samples, average concentration 0.003 μg/L). Metronidazole and clindamycin were found in one sample, at 0.17 and 0.1 μg/L, respectively; and trimethoprim in two samples, at 0.001 μg/L. Analysis of sea water collected near the outfall of the wastewater discharges also showed the sporadic presence of 3 antibiotics (ciprofloxacin, clindamycin, trimethoprim) at low ng/L level, illustrating the impact of pharmaceuticals consumption and the poor removal of these compounds in conventional WWTPs. The most widespread antibiotic in sea water was ciprofloxacin, which was found in 15 out of 34 sea water samples analyzed, at concentrations ranging from 4 to 218 ng/L. Bacteria resistance was observed for some antibiotics identified in the samples (e.g. trimetropim and nalidixic acid –a first generation quinolone). However, resistance to some groups of antibiotics could not be correlated to their presence in the water samples due to analytical limitations (penicillins, tetraciclines). On the contrary, for some groups of antibiotics detected in samples (macrolides), the antibacterial activity against E. Coli was not investigated because these antibiotics do not include this bacterial species in their spectrum of activity.
Our preliminary data demonstrate that antibiotics occurrence in the Antarctic aquatic environment is an issue that needs to be properly addressed. Periodical monitoring of water samples and the implementation of additional treatments in the WWTPs are recommended as a first step to prevent potential problems related to the presence of antibiotics and other emerging contaminants in the near future in Antarctica
Experimental proof of faster-is-slower in systems of frictional particles flowing through constrictions
The "faster-is-slower" (FIS) effect was first predicted by computer simulations of the egress of pedestrians through a narrow exit D. Helbing, I. J. Farkas, and T. Vicsek, Nature (London) 407, 487 (2000)NATUAS0028-083610.1038/35035023]. FIS refers to the finding that, under certain conditions, an excess of the individuals'' vigor in the attempt to exit causes a decrease in the flow rate. In general, this effect is identified by the appearance of a minimum when plotting the total evacuation time of a crowd as a function of the pedestrian desired velocity. Here, we experimentally show that the FIS effect indeed occurs in three different systems of discrete particles flowing through a constriction: (a) humans evacuating a room, (b) a herd of sheep entering a barn, and (c) grains flowing out a 2D hopper over a vibrated incline. This finding suggests that FIS is a universal phenomenon for active matter passing through a narrowing
- …