1,149 research outputs found

    Life cycle assessment of a polymer electrolyte membrane fuel cell system for passenger vehicles

    Get PDF
    In moving towards a more sustainable society, hydrogen fueled polymer electrolyte membrane (PEM) fuel cell technology is seen as a great opportunity to reduce the environmental impact of the transport sector. However, decision makers have the challenge of understanding the real environmental consequences of producing fuel cell vehicles (FCVs) compared to alternative green cars, such as battery electric vehicles (BEVs). and more conventional internal combustion engine vehicles (ICEVs). In this work, we presented a comprehensive life cycle assessment (LCA) of a FCV focused on its manufacturing phase and compared with the production of a BEV and an ICEV. For the manufacturing phase, the FCV inventories started from the catalyst layer to the glider, including the hydrogen tank. A sensitivity analysis on some of the key components of the fuel cell stack and the FC system (such as balance-of-plant and hydrogen tank) was carried out to account for different assumptions on materials and inventory models. The production process of the fuel cell vehicle showed a higher environmental impact compared to the production of the other two vehicles power sources. This is mainly due to the hydrogen tank and the fuel cell stack. However, by combining the results of the sensitivity analysis for each component - a best-case scenario showed that there is the potential for a 25% reduction in the climate change impact category for the FCV compared to a baseline FCV scenario. Reducing the environmental impact associated with the manufacture of fuel cell vehicles represents an important challenge. The entire life cycle has also been considered and the manufacturing, use and disposal of FCV, electric vehicle and conventional diesel vehicle were compared. Overall, the ICEV showed the highest GWP and this was mainly due to the use phase and the fossil carbon emissions associated to the use of diesel

    Life cycle assessment of conventional and advanced two-stage energy-from-waste technologies for methane production

    Get PDF
    This study integrates the Life Cycle Assessment (LCA) of thermal and biological technologies for municipal solid waste management within the context of renewable resource use for methane production. Five different scenarios are analysed for the UK, the main focus being on advanced gasification-plasma technology for Bio Substitute natural gas (Bio-SNG) production, anaerobic digestion and incineration. Firstly, a waste management perspective has been taken and a functional unit of 1 kg of waste to be disposed was used; secondly, according to an energy production perspective a functional unit of 1 MJ of renewable methane produced was considered. The first perspective demonstrates that when the current energy mix is used in the analysis (i.e. strongly based on fossil resources), processes with higher electric efficiency determine lower global warming potential (GWP). However, as the electricity mix in the UK becomes less carbon intensive and the natural gas mix increases the carbon intensity, processes with higher Bio-SNG yield are shown to achieve a lower global warming impact within the next 20 years. When the perspective of energy production is taken, more efficient technologies for renewable methane production give a lower GWP for both current and future energy mix. All other LCA indicators are also analysed and the hot spot of the anaerobic digestion process is performed

    Therapeutic potential of targeting sphingosine kinases and sphingosine 1-phosphate in hematological malignancies

    Get PDF
    Sphingolipids, such as ceramide, sphingosine and sphingosine 1-phosphate (S1P) are bioactive molecules that have important functions in a variety of cellular processes, which include proliferation, survival, differentiation and cellular responses to stress. Sphingolipids have a major impact on the determination of cell fate by contributing to either cell survival or death. Although ceramide and sphingosine are usually considered to induce cell death, S1P promotes survival of cells. Sphingosine kinases (SPHKs) are the enzymes that catalyze the conversion of sphingosine to S1P. There are two isoforms, SPHK1 and SPHK2, which are encoded by different genes. SPHK1 has recently been implicated in contributing to cell transformation, tumor angiogenesis and metastatic spread, as well as cancer cell multidrug-resistance. More recent findings suggest that SPHK2 also has a role in cancer progression. This review is an overview of our understanding of the role of SPHKs and S1P in hematopoietic malignancies and provides information on the current status of SPHK inhibitors with respect to their therapeutic potential in the treatment of haematological cancers

    Development status of the LAUE project

    Full text link
    We present the status of LAUE, a project supported by the Italian Space Agency (ASI), and devoted to develop Laue lenses with long focal length (up to 100 meters), for hard X--/soft gamma--ray astronomy (80-600 keV). Thanks to their focusing capability, the design goal is to improve the sensitivity of the current instrumention in the above energy band by 2 orders of magnitude, down to a few times 10810^{-8} photons/(cm2^2 s keV).Comment: 9 pages, 9 figures, presented at the Space Telescopes and Instrumentation Symposium in Amsterdam, 2012: Ultraviolet to Gamma Ray Conference. Published in the Proceedings of the SPIE, Volume 8443, id. 84430B-84430B-9 (2012

    Magnetic and thermal properties of 4f-3d ladder-type molecular compounds

    Full text link
    We report on the low-temperature magnetic susceptibilities and specific heats of the isostructural spin-ladder molecular complexes L2_{2}[M(opba)]_{3\cdot xDMSOy\cdot yH2_{2}O, hereafter abbreviated with L2_{2}M3_{3} (where L = La, Gd, Tb, Dy, Ho and M = Cu, Zn). The results show that the Cu containing complexes (with the exception of La2_{2}Cu3_{3}) undergo long range magnetic order at temperatures below 2 K, and that for Gd2_{2}Cu3_{3} this ordering is ferromagnetic, whereas for Tb2_{2}Cu3_{3} and Dy2_{2}Cu3_{3} it is probably antiferromagnetic. The susceptibilities and specific heats of Tb2_{2}Cu3_{3} and Dy2_{2}Cu3_{3} above TCT_{C} have been explained by means of a model taking into account nearest as well as next-nearest neighbor magnetic interactions. We show that the intraladder L--Cu interaction is the predominant one and that it is ferromagnetic for L = Gd, Tb and Dy. For the cases of Tb, Dy and Ho containing complexes, strong crystal field effects on the magnetic and thermal properties have to be taken into account. The magnetic coupling between the (ferromagnetic) ladders is found to be very weak and is probably of dipolar origin.Comment: 13 pages, 15 figures, submitted to Phys. Rev.

    Dodecanuclear 3d/4f-metal clusters with a 'Star of David' topology: Single-molecule magnetism and magnetocaloric properties

    Get PDF
    A family of interwoven molecular inorganic knots, shaped like the 'Star of David', was prepared by the employment of naphthalene-2,3-diol in 3d/4f-metal cluster chemistry; the isoskeletal dodecanuclear compounds exhibit slow relaxation of the magnetization and magnetocaloric properties, depending on the metal ion.This work was supported by Brock University, NSERC-DG and ERA (to Th.C.S), the Ontario Trillium Foundation (graduate scholarship to D.I.A), the Fundaçao para a Ciencia e a Tecnologia (FCT, Portugal) financial support to REQUIMTE/LAQV (UID/ QUI/50006/2013), the European Synchrotron Radiation Facility (Grenoble, France) (for granting access time to the Swiss Norwegian BM01a beamline under the CH-3613 and CH-3849 research proposals), MINECO (FEDER-MAT2012-38318-C03 to M. E and postdoctoral contract to G. L), and the National Natural Science Foundation of China (grants 21371166, 21331003 and 21221061 to J. T).Peer Reviewe

    A mutation screening of oncogenes, tumor suppressor gene TP53 and nuclear encoded mitochondrial complex I genes in oncocytic thyroid tumors.

    Get PDF
    Background: Thyroid neoplasias with oncocytic features represent a specific phenotype in non-medullary thyroid cancer, reflecting the unique biological phenomenon of mitochondrial hyperplasia in the cytoplasm. Oncocytic thyroid cells are characterized by a prominent eosinophilia (or oxyphilia) caused by mitochondrial abundance. Although disruptive mutations in the mitochondrial DNA (mtDNA) are the most significant hallmark of such tumors, oncocytomas may be envisioned as heterogeneous neoplasms, characterized by multiple nuclear and mitochondrial gene lesions. We investigated the nuclear mutational profile of oncocytic tumors to pinpoint the mutations that may trigger the early oncogenic hit. Methods: Total DNA was extracted from paraffin-embedded tissues from 45 biopsies of oncocytic tumors. High-resolution melting was used for mutation screening of mitochondrial complex I subunits genes. Specific nuclear rearrangements were investigated by RT-PCR (RET/PTC) or on isolated nuclei by interphase FISH (PAX8/PPARγ). Recurrent point mutations were analyzed by direct sequencing. Results: In our oncocytic tumor samples, we identified rare TP53 mutations. The series of analyzed cases did not include poorly- or undifferentiated thyroid carcinomas, and none of the TP53 mutated cases had significant mitotic activity or high-grade features. Thus, the presence of disruptive TP53 mutations was completely unexpected. In addition, novel mutations in nuclear-encoded complex I genes were identified. Conclusions: These findings suggest that nuclear genetic lesions altering the bioenergetics competence of thyroid cells may give rise to an aberrant mitochondria-centered compensatory mechanism and ultimately to the oncocytic phenotype. Keywords: Oncocytic carcinoma, Nuclear mitochondrial complex I subunits, Oncogene mutation analysi

    The SOCS3-independent expression of IDO2 supports the homeostatic generation of T regulatory cells by human dendritic cells.

    Get PDF
    Dendritic cells (DCs) are professional APCs that have a role in the initiation of adaptive immune responses and tolerance. Among the tolerogenic mechanisms, the expression of the enzyme IDO1 represents an effective tool to generate T regulatory cells. In humans, different DC subsets express IDO1, but less is known about the IDO1-related enzyme IDO2. In this study, we found a different pattern of expression and regulation between IDO1 and IDO2 in human circulating DCs. At the protein level, IDO1 is expressed only in circulating myeloid DCs (mDCs) and is modulated by PGE2, whereas IDO2 is expressed in both mDCs and plasmacytoid DCs and is not modulated by PGE2. In healthy subjects, IDO1 expression requires the presence of PGE2 and needs continuous transcription and translation, whereas IDO2 expression is constitutive, independent from suppressor of cytokine signaling 3 activity. Conversely, in patients suffering from inflammatory arthritis, circulating DCs express both IDO1 and IDO2. At the functional level, both mDCs and plasmacytoid DCs generate T regulatory cells through an IDO1/IDO2-dependent mechanism. We conclude that, in humans, whereas IDO1 provides an additional mechanism of tolerance induced by proinflammatory mediators, IDO2 is stably expressed in steady-state conditions and may contribute to the homeostatic tolerogenic capacity of DCs

    MiR-128 up-regulation inhibits Reelin and DCX expression and reduces neuroblastoma cell motility and invasiveness

    Get PDF
    MicroRNAs are a class of sophisticated regulators of gene expression, acting as post-transcriptional inhibitors that recognize their target mRNAs through base pairing with short regions along the 3'UTRs. Several microRNAs are tissue specific, suggesting a specialized role in tissue differentiation or maintenance, and quite a few are critically involved in tumorigenesis. We studied miR-128, a brain-enriched microRNA, in retinoic acid-differentiated neuroblastoma cells, and we found that this microRNA is up-regulated in treated cells, where it down-modulates the expression of two proteins involved in the migratory potential of neural cells: Reelin and DCX. Consistently, miR-128 ectopic overexpression suppressed Reelin and DCX, whereas the LNA antisense-mediated miR-128 knockdown caused the two proteins to increase. Ectopic miR-128 overexpression reduced neuroblastoma cell motility and invasiveness, and impaired cell growth. Finally, the analysis of a small series of primary human neuroblastomas showed an association between high levels of miR-128 expression and favorable features, such as favorable Shimada category or very young age at diagnosis. Thus, we provide evidence for a role for miR-128 in the molecular events modulating neuroblastoma progression and aggressiveness

    New results on focusing of gamma-rays with Laue lenses

    Full text link
    We report on new results on the development activity of broad band Laue lenses for hard X-/gamma-ray astronomy (70/100-600 keV). After the development of a first prototype, whose performance was presented at the SPIE conference on Astronomical Telescopes held last year in Marseille (Frontera et al. 2008), we have improved the lens assembling technology. We present the development status of the new lens prototype that is on the way to be assembled.Comment: 8 pages, 11 figures, to be Published in SPIE Proceedings, vol.7437-19, 200
    corecore