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Abstract 27 

Sphingolipids such as ceramide, sphingosine, and sphingosine 1-phosphate (S1P), are bioactive 28 

molecules that have important functions in a variety of cellular processes, which include 29 

proliferation, survival, differentiation and cellular responses to stress. Sphingolipids have a major 30 

impact on determination of the cell fate by contributing to either cell survival or death. While 31 

ceramide and sphingosine are usually considered to induce cell death, S1P promotes survival of 32 

cells. Sphingosine kinases (SPHKs) are the enzymes that catalyze the conversion of sphingosine to 33 

S1P. There are two isoforms, SPHK1 and SPHK2, which are encoded by different genes. SPHK1 34 

has recently been implicated in contributing to cell transformation, tumor angiogenesis, and 35 

metastatic spread, as well as cancer cell multidrug-resistance. More recent findings suggest that 36 

SPHK2 also has a role in cancer progression. This review is an overview of our understanding of 37 

the role of SPHKs and S1P in hematopoietic malignancies and provides information on the current 38 

status of SPHK inhibitors with respect to their therapeutic potential in the treatment of 39 

hematological cancers.  40 

 41 
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INTRODUCTION 53 

The most spectacular success so far in the field of targeted therapy of hematological malignancies 54 

has been the introduction of the BCR/ABL1 tyrosine kinase ATP-competitive inhibitor, imatinib, 55 

which produces a major cytogenetic response in the vast majority of newly-diagnosed chronic phase 56 

chronic myelogenous leukemia (CML) patients. However, imatinib resistance/intolerance have led 57 

to the development of additional tyrosine kinase inhibitors, which have demonstrated effectiveness 58 

as salvage therapies or alternative first-line treatments for CML 
1
.  59 

CML is a unique disorder in that BCR/ABL1 is sufficient for disease initiation and progression. In 60 

contrast, most hematological malignant disorders are more complex and display multiple genetic 61 

and/or epigenetic aberrations which affect many signaling pathways, including those responsible for 62 

cell proliferation, survival, differentiation, metabolism and drug-resistance. It is highly unlikely that 63 

single targeted agent therapy will be sufficient for successful treatment of these more complex 64 

diseases. Therefore, the use of rational combinations of appropriately targeted drugs might provide 65 

viable treatment options and these could also be combined with traditional chemotherapy.  66 

In 1996, the �sphingolipid rheostat� model was proposed, based on evidence showing that 67 

ceramide, sphingosine and sphingosine 1-phosphate (S1P) differentially regulate cellular signaling 68 

pathways involved in proliferation and survival. The suggestion was that growth factors, cellular 69 

stress and inflammatory mediators might alter the balance between ceramide and S1P in order to 70 

control cell fate 
2, 3

. This was supported by the finding that ceramide induces cell growth arrest and 71 

apoptosis, whereas S1P induces cell growth. Over the following years, many efforts were made to 72 

elucidate the molecular signaling pathways by which ceramide and S1P cause their effects. These 73 

studies have also revealed important roles for ceramide and S1P in the pathology of several human 74 

disorders, including cancer 
4
. Therefore, from a therapeutic perspective, these findings have 75 

provided the rationale for manipulating the ceramide/S1P balance with small molecule inhibitors, in 76 

order to, for example, induce apoptosis of cancer cells. One particular target regulating the 77 

sphingolipid rheostat is the enzyme, sphingosine kinase (SPHK), which catalyzes the formation of 78 
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S1P. There are two isoforms, SPHK1 and SPHK2 that are encoded by different genes and which are 79 

involved in hematological malignancies 
5
. In this review, we focus on the emerging evidence that 80 

SPHKs may indeed represent a target for innovative treatment of patients suffering from 81 

hematological malignant disorders.  82 

 83 

Sphingosine 1-phosphate  84 

Ceramide, sphingosine and S1P are bioactive sphingolipids involved in a wide range of cellular 85 

processes, including cell proliferation, apoptosis, autophagy, motility, angiogenesis and 86 

inflammation. Ceramide can be deacylated by ceramidases to form sphingosine, which in turn is 87 

phosphorylated by SPHKs to produce S1P. S1P can then be dephosphorylated by S1P phosphatases 88 

or lipid phosphate phosphatases or irreversibly cleaved by S1P lyase (Figure 1). S1P is generally 89 

produced within the cell and binds to either intracellular proteins (see below) or, upon export, 90 

functions as a ligand for five heterotrimeric G protein-coupled receptors, referred to as S1P1 to 91 

S1P5. S1P binding to these receptors regulates angiogenesis, lymphocyte trafficking through blood 92 

and lymphoid organs, inflammation and cell transformation. This involves activation of signaling 93 

pathways that include Ras/MEK/extracellular signal-regulated kinase-1/2 (ERK-1/2), 94 

phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR), Rac, Rho and 95 

phospholipase C (PLC) 
6
. S1P is exported from cells through both ATP-dependent and -96 

independent mechanisms. ATP-dependent export mechanisms, such as in erythrocytes, mast cells, 97 

and platelets, involve members of the ATP-binding cassette (ABC) super family of transporters, 98 

including ABCC1, ABCA1 and ABCG2. The spinster homolog 2 (SPNS2) is a transporter which 99 

plays an important role in exporting S1P from endothelial cells and B- and T-lymphocytes via an 100 

ATP-independent mechanism 
7
. 101 

The regulation of intracellular targets by S1P binding also affects inflammation, immediate early 102 

gene expression and replicative immortality. For example, tumor necrosis factor (TNF) receptor-103 

associated factor 2 (TRAF2) is an essential component in the TNF-Į/nuclear factor-țB (NF-țB) 104 
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signaling pathway. It has been reported that S1P confers E3 ligase activity on TRAF2. TRAF2 105 

catalyzes the Lys63-polyubiquitination of the receptor-interacting serine/threonine-protein kinase 1 106 

(RIPK1), which serves as a scaffold platform for activation of the NF-κB pathway and regulates 107 

cell survival and inflammatory and immune responses. However, the role of SPHK1 in TRAF2-108 

NFκB signaling is controversial. For instance, studies have shown that TNFα-mediated activation 109 

of NF-κB and cytokine production is unaffected in macrophages deficient in both SPHK1 and 110 

SPHK2. S1P has also been shown to bind to and inhibit the activity of histone deacetylases 111 

(HDACs) 1 and 2 leading to increases in histone acetylation, thereby inducing expression of c-Fos 112 

and the cell cycle negative regulator, p21. Furthermore, S1P binds to human telomerase reverse 113 

transcriptase (hTERT) to increase its stability, enhance telomere integrity and prevent senescence. 114 

The binding of S1P to hTERT prevents its interaction with makorin ring finger protein 1 (MKRN1), 115 

an E3 ubiquitin ligase that polyubiquitinates hTERT and promotes its proteasomal degradation (see 116 

6
 for details). 117 

A role for S1P in cancer was initially suggested by the finding that the concentration of S1P in the 118 

plasma of cancer patients is elevated, suggesting that S1P might promote tumor growth via S1P 119 

receptors 
8, 9

. Indeed, S1P binding to S1P receptors promotes carcinogenesis through crosstalk with 120 

different receptor tyrosine kinases that involves transactivation 
10, 11

, integrative S1P-receptor 121 

tyrosine kinase complex formation 
12

 and regulatory loop amplification 
13

. Clinical relevance is 122 

evident from studies showing that high expression of SPHK1 and S1P1 and S1P3 receptors in 123 

estrogen positive breast tumors are associated with poor prognosis 
14

. 124 

 125 

Sphingosine kinases 126 

SPHK1 and SPHK2 belong to a family of proteins highly conserved throughout eukaryotes, ranging 127 

from yeasts to humans. SPHK1 and SPHK2 genes are located on human chromosome 17 (17q25.2) 128 

and 19 (19q13.2), respectively. Although the human isoforms vary considerably in size (384 and 129 
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618 amino acids for SPHK1 and SPHK2, respectively), they share 80% similarity and 45% overall 130 

sequence identity. SPHK2 contains additional regions at its N-terminus that are involved in 131 

regulating membrane localization and a proline-rich insert in the middle of its amino-acid primary 132 

sequence (Figure 2). SPHKs display differential expression during development, as well as 133 

different subcellular localization. Indeed, SPHK2 possesses a functional nuclear localization signal 134 

(NLS) and can shuttle in and out of the nucleus. In addition to being localized in the cytosol and the 135 

plasma membrane, SPHK2 can associate with mitochondria and under stress conditions with the 136 

endoplasmic reticulum (ER). In contrast, SPHK1 is distributed in the cytosol and the plasma 137 

membrane. These observations indicate that SPHKs have distinct biological roles. However, mice 138 

with genetic deletion of either Sphk1 or Sphk2 developed normally, suggesting there is considerable 139 

functional redundancy. In contrast, deletion of both genes is embryonic lethal due to severely 140 

disturbed neurogenesis and angiogenesis 
15, 16

.  141 

 142 

Sphingosine kinase 1 143 

Three SPHK1 isoforms have been identified, which result from alternative splicing and differ only 144 

in their N-terminal regions 
15

. SPHK1a is expressed in the central nervous system, the kidney, 145 

endothelial cells, megakaryocytes and platelets. SPHK1a appears to be the main contributor to 146 

plasma S1P levels. In contrast, SPHK1b has a 14 amino-acid N-terminal extension. SPHK1c 147 

(sometimes referred also to as SPHK1b based on antibody identification of 42 versus 51 kDa 148 

isoforms) has an 86 amino-acid extension at the N-terminus. The N-terminal 86 amino-acid 149 

extended SPHK1 isoform (termed here SPHK1b) is very much more stable in cells compared with 150 

SPHK1a and appears to be associated with chemo-resistance of cancer cells.  For example, the 151 

sphingosine kinase inhibitor, SKI-II [SKi, 2-(p-hydroxyanilino)-4-(p-chlorophenyl) thiazole)] 152 

induces the proteasomal degradation of SPHK1a and SPHK1b in androgen-sensitive LNCaP 153 

prostate cancer cells and this is associated with apoptosis of these cells 
17

. SKI-II also induces 154 

proteasomal degradation of SPHK1a in androgen-independent LNCaP-AI cells, but fails to reduce 155 
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SPHK1b levels 
17

 and these cells do not undergo apoptosis. It should be noted that most studies 156 

focus on SPHK1a and the relative importance of the splice variant forms remains unclear.  SPHK1 157 

exhibits intrinsic catalytic activity 
18

, which can be further up-regulated by a wide range of growth 158 

factors, cytokines, hormones and adhesion molecules which include epidermal growth factor (EGF), 159 

TNF-α, androgens and platelet endothelial cell adhesion molecule (PECAM) -1. Activation of 160 

SPHK1 is via phosphorylation, catalyzed by ERK-1/2. ERK-1/2 catalyzes phosphorylation of 161 

SPHK1 at Ser 225 
19

, which induces its activation and translocation from the cytoplasm to the 162 

plasma membrane and which also involves its binding to calcium- and integrin-binding protein 1 163 

(CIB1) 
20

. SPHK1 phosphorylation is transient, being reversed by protein phosphatase 2A (PP2A) 164 

21
. The S1P formed by SPHK1 can be released from cells to activate S1P receptor-mediated 165 

signaling, in a process termed �inside-out� signaling 
22

.  166 

Over-expression of SPHK1 induced neoplastic transformation of NIH3T3 fibroblasts, although it is 167 

not yet established whether SPHK1 is an oncogene as there are no reported activating mutations in 168 

cancer. Vadas et al. 
23

 have defined a non-oncogenic addiction of cancer cells to SPHK1. 169 

Nevertheless, SPHK1 expression levels are up-regulated in several malignancies, including 170 

glioblastoma, non-Hodgkin lymphomas (NHL), prostate cancer, colon adenocarcinoma, non-small-171 

cell lung cancer and chemoresistant acute leukemia 
24, 25

. Moreover, high SPHK1 expression levels 172 

in tumors is associated with poor patient survival in glioblastoma, gastric cancer, breast cancer and 173 

cholongiocarcinoma 
4
. It should be noted that in some of these studies SPHK1 mRNA levels were 174 

analyzed 
24, 25

, whereas in others, SPHK1 protein levels were investigated 
13, 14, 24, 25

.  175 

A systematic review and meta-analysis of literature data on SPHK1 expression in human cancers as 176 

compared to healthy tissue has been recently published 
26

. This analysis included 4,673 patients 177 

from 7 countries and 19 types of cancer. Overall, this study demonstrated that SPHK1 178 

positivity/high expression in tumors was significantly associated with various types of cancers and 179 

reduced 5-year and overall survival. The important role played by SPHK1 in cancer cell biology is 180 

substantiated by the fact that chemical targeting of SPHK1 reduced tumor growth in xenograft 181 
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mouse models of established human tumor cell lines 
27-30

 and decreased therapeutic resistance in 182 

prostate cancer 
31-33

, pancreatic adenocarcinoma 
34

 and breast cancer cells 
35

.  183 

 184 

Sphingosine kinase 2 185 

Two SPHK2 isoforms (SPHK2-S/SPHK2a and SPHK2-L/SPHK2b) have been identified, encoded 186 

by alternative start codon usage 
16

. When compared with SPHK2a, SPHK2b possesses an additional 187 

36 amino acids and is more abundantly expressed in a range of human tissues and cultured cells. 188 

Like SPHK1, SPHK2 displays intrinsic catalytic activity that can be further increased by ERK-1/2-189 

catalyzed phosphorylation on Ser 351 and/or Thr 578 (Ser 387 and Thr 614 on SPHK2b)
36

. 190 

SPHK2a localizes to either the nucleus or the cytoplasm and accumulates in the nucleus under 191 

conditions of stress 
16

. 192 

In the nucleus, SPHK2 produces S1P which binds to and inhibits HDAC 1/2 activity, resulting in 193 

increased histone acetylation and the subsequent expression of the cyclin-dependent kinase inhibitor 194 

p21, an inhibitor of cell cycle progression and the transcriptional regulator, c-Fos 
37

. SPHK2 195 

contains a NLS and a putative nuclear export signal (NES). Phosphorylation in the NES (either Ser 196 

419 or Ser 421 of SPHK2b) by protein kinase D results in the export of SPHK2 from the nucleus 197 

into the cytoplasm 
38

. SPHK2 can play a pro-apoptotic role when associated with the endoplasmic 198 

reticulum, by generating S1P which is channeled into biosynthesis of pro-apoptotic ceramide 
39

. 199 

Further evidence to suggest a pro-apoptotic role for SPHK2 is the finding that the BH3-binding 200 

domain of  SPHK2 sequesters and inhibits the pro-survival Bcl-2 family member, Bcl-xL 
40

, while 201 

S1P formed by SPHK2 affects mitochondrial membrane permeability and cytochrome c release to 202 

induce apoptosis 
41

. 203 

However, several other more recent studies have suggested a pro-survival role for SPHK2 as its 204 

knock-down enhanced apoptosis and increased the sensitivity of cancer cells to chemotherapy 
42-45

. 205 

This is supported by the finding that shRNA knock-down of SPHK2 in MCF7 human breast cancer 206 

cells results in delayed growth of cancer cells in immunocompromised mice 
46

 207 
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Furthermore, the SPHK2 inhibitor ABC294640 decreased cell proliferation in a number of solid 208 

cancer types in vitro and induced autophagic cell death in kidney, prostate and breast tumor cell 209 

lines 
47-49

 and inhibited in vivo growth of breast adenocarcinoma, hepatocellular and renal 210 

carcinoma 
47, 48 

. However, ABC294640 has since been found to inhibit and induce the proteasomal 211 

degradation of SPHK1 and dihydroceramide saturase 
50, 51

, which may contribute to its anti-tumor 212 

effects in vitro and in vivo.  213 

 214 

Sphingosine kinase inhibitors 215 

The advance in our understanding of the role of SPHKs in disease has provided impetus for the 216 

development of small molecule inhibitors of these enzymes. Selective inhibitors of SPHK1 with 217 

nanomolar potency include PF-543 
52

 and Genzyme compound 51 
53

. These inhibitors are effective in 218 

a number of animal disease models. For instance, PF-543 decreases sickling of red blood cells in 219 

vitro and in vivo 
54

 and reduces cardiac remodelling following post myocardial infarction where 220 

SPHK1/S1P/S1P1 participate in cardiac inflammation 
55

. SPHK2-selective inhibitors include 221 

ABC294640, K145, SLR080811 and ROMe [(R)-FTY720-methyl-ether)], which exhibit micromolar 222 

potency. ABC294640 is in phase 1/2 clinical trials for refractory/relapsed diffuse large B cell 223 

lymphoma (DLBCL) (NCT02229981) and multiple myeloma (MM) (NCT02757326). The use of 224 

SPHK2 inhibitors suggests a conserved role of SPHK2 in regulating common signalling pathways in 225 

different cancers.  For instance, ROMe inhibits DNA synthesis in breast cancer cells 
56

 and induces 226 

the autophagic death of leukemic T-ALL cell lines 
57

. There are also inhibitors that target the ATP-227 

binding site of SPHK. For instance, MP-A08 inhibits SPHK1 and SPHK2 with low micromolar 228 

potency 
29

 and reduces cellular S1P levels, while elevating cellular ceramides, sphingosine, and 229 

dihydrosphingolipids. This appears to underlie the mechanisms by which MP-A08 induces apoptosis 230 

and inhibits cell proliferation and colony formation in vitro.  231 

To date, there are no high-potency SPHK2-specific inhibitors. However, with the solved crystal 232 

structures of SPHK1 in the absence and presence of SPHK inhibitors (SKI-II 
58

, PF-543 
59

 and 233 
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Amgen compound 23 
60

 and with ADP
58

), it has been possible to define the sphingosine substrate 234 

binding site (named the �J-channel� due to its shape), the nucleotide binding site and detail of the 235 

interaction of sphingosine-competitive inhibitors 
60

 and an ATP-competitive inhibitor 
29

. In the future 236 

this will help inform on the design of isoform-selective inhibitors by identifying and exploiting key 237 

differences between SPHK1 and SPHK2.  238 

Dual SPHK1/SPHK2 inhibitors include SKI-II (also called SKi) 
61

 and Amgen compound 82 
62, 63

. 239 

SKI-II inhibits human SPHK1 and SPHK2 with micromolar potency 
63

 and induces the proteasomal 240 

degradation of SPHK1 in cancer cells 
17

. In vivo effects include the reduction of tumor volume 
64

, 241 

reduced bronchial hyper-responsiveness, prevention of cerebral preconditioning and increased 242 

atherosclerosis in low-density lipoprotein receptor deficient (LDL-R
-/-

) mice. 243 

The therapeutic potential afforded by targeting SPHKs continues to fuel a drive to generate small 244 

molecule inhibitors for several disease indications. 245 

 246 

SPHINGOSINE METABOLISM AND SIGNALING IN MALIGNANT HEMATOPOIETIC 247 

DISORDERS 248 

S1P displays well-known mitogenic and anti-apoptotic activities. Several factors [e.g. platelet-249 

derived growth factor (PDGF)] that promote proliferation/survival have been shown to activate 250 

SPHK1 in hematological malignancies such as T-cell large granular lymphocytic leukemia (T-LGL 251 

65
). We will now review the evidence which links SPHKs and S1P with the pathobiology of 252 

malignant blood disorders (summarized in Table 1).  253 

It should not be forgotten however, that S1P acts as a major chemoattractant which directs the 254 

egress of healthy hematopoietic stem cell from bone marrow 
66

 as well as their homing and 255 

engraftment in the same compartment 
67

. 256 

 257 

 258 
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Chronic myelogenous leukemia 259 

Some CML patients are either initially refractory to imatinib treatment or develop resistance and 260 

experience disease relapse. Second- and third-generation BCR/ABL1 inhibitors have been 261 

developed for treating imatinib-resistant patients and are being successfully used in the clinic 
68

. 262 

However, even the introduction of these new drugs has not completely solved the problem of 263 

tyrosine kinase inhibitor resistance in CML patients as this leukemia can be driven independently of 264 

BCR/ABL1 
69

.   265 

Several lines of evidence support the possibility that SPHK1 and its regulation of the sphingolipid 266 

rheostat have an important role in CML. Baran et al. 
70

 demonstrated that imatinib increased the 267 

generation of C18-ceramide in sensitive, but not resistant K562 cells 
70

. This was correlated with 268 

higher expression levels of SPHK1 in imatinib-resistant K562 cells. Indeed, the knock-down of 269 

SPHK1 expression by siRNA in these resistant cells decreased S1P levels and increased the 270 

sensitivity to imatinib, thereby providing evidence that SPHK1 was responsible for the acquisition 271 

of resistance to imatinib. This was supported by the finding that the overexpression of SPHK1 in 272 

K562 cells increased the total S1P/C18-ceramide level ratio approximately 6-fold and prevented 273 

apoptosis in response to imatinib. Interestingly, this is associated with a 漢2-fold increase in 274 

BCR/ABL1 protein expression. A link between SPHK1 and BCR/ABL1 was evinced by the finding 275 

that the siRNA knock-down of SPHK1 resulted in a decrease in BCR/ABL1 protein levels 
70

. This 276 

is important in terms of linking SPHK1 with clinical prognosis in CML as BCR/ABL1 levels are  277 

directly proportional to the extent of imatinib resistance in CML cell lines 
71-73

 and in patients 
74

. 278 

Additional studies demonstrated that increased expression of SPHK1 in imatinib-resistant cells was 279 

due to over-activation of the PI3K/Akt/mTOR signaling pathway 
75

. This was a significant finding 280 

as activation of this pathway has been linked with tyrosine kinase inhibitor resistance in CML 281 

cells
76-80

. In addition, ERK-1/2 and Janus kinase (JAK) 2 are implicated in regulating the expression 282 

of SPHK1 in BCR/ABL1-transformed cells 
81

.  283 
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SPHK1/S1P signaling also enhances BCR/ABL1 protein stability via a mechanism that involves 284 

S1P2-dependent inhibition of the proteasomal degradation of BCR/ABL1 in imatinib-resistant K562 285 

and LAMA-4 human CML cells 
82

. S1P binding to S1P2 prevented BCR/ABL1 dephosphorylation 286 

and degradation via inhibition of PP2A activity. Moreover, molecular or pharmacologic 287 

interference of SPHK1/S1P2 signaling restored PP2A-dependent BCR/ABL1 dephosphorylation 288 

and enhanced imatinib- or nilotinib-induced growth inhibition in primary CD34
+
 mononuclear cells 289 

(obtained from either chronic phase or blast crisis CML patients), imatinib-resistant K562  or 290 

LAMA4 cells and 32Dcl3 murine progenitor cells, expressing the wild-type or mutant (Y253H or 291 

T315I) BCR/ABL1. This model was supported by evidence demonstrating that the abrogation of 292 

SPHK1/S1P2 signaling enhanced the growth-inhibitory effects of nilotinib in 32D/T315I-BCR-293 

ABL1-derived mouse allografts 
82

.  294 

These findings support the notion that inhibiting SPHK1/S1P2 signaling might represent a novel 295 

approach for targeting either wild-type or mutant BCR/ABL1, thereby overcoming resistance to 296 

tyrosine kinase inhibitors in CML cells. In this regard, treatment with the SPHK1 inhibitor, SKI-II, 297 

impaired cell cycle progression and induced apoptosis in K562 cells. Moreover, SKI-II acted 298 

synergistically with imatinib to inhibit cell growth and survival and affected the clonogenic 299 

potential and viability of primary cells from CML patients, including one patient harboring the 300 

imatinib-insensitive T315I mutation 
83

. The anti-apoptotic activity of SPHK1 in BCR/ABL1-301 

harboring CML cells is dependent on the expression of Bcl-2 family members. Thus, imatinib 302 

treatment failed to down-regulate anti-apoptotic Bcl-xL and myeloid cell leukemia-1 (Mcl-1) levels 303 

in LAMA84 cells overexpressing SPHK1, as well as increasing the expression of pro-apoptotic Bim 304 

in LAMA84/Neo cells 
84

. Mcl-1 appears to have a critical role in mediating the anti-apoptotic 305 

function of SPHK1. This was evidenced by studies showing that combined treatment of  K562 and 306 

primary cells from CML patients with SKI-II and the proteosomal inhibitor bortezomib caused 307 

apoptosis accompanied by down-regulation of Mcl-1 
85

. A schematic on the relationship between 308 

SPHK1/S1P, BCR/ABL1 and imatinib resistance is presented in Figure 3.   309 
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These findings provide a powerful rationale for targeting SPHK1 in CML, not least because the 310 

overwhelming evidence suggests that SPHK1 has a critical and definitive role in regulating the 311 

oncogenic signaling gain of BCR/ABL1 through an S1P/S1P2 receptor-dependent stabilization of 312 

BCR/ABL1.  In addition, SPHK1 also confers resistance of CML cells to imatinib by maintaining 313 

Mcl-1 expression.  Taken together these findings demonstrate functional association of SPHK1 with 314 

important oncogenes that underlie the hallmarks of cancer. 315 

 316 

Large granular lymphocytic leukemia 317 

LGL leukemia is a rare and incurable chronic disease, characterized by clonal expansion of either 318 

cytotoxic T-cells (T-LGL) or natural killer (NK) cells (NK-LGL) in blood and bone marrow. 319 

Somatic activating Signal Transducer and Activator of Transcription (STAT) 3 mutations have been 320 

shown to be specific for T-LGL leukemia and with a prevalence of up to 70% 
86

.  It has been shown 321 

that SPHK1 is activated by PDGF in T-LGL and its inhibition by SKI-I and SKI-II can significantly 322 

induce apoptosis of leukemic cells 
65

. The importance of this finding is exemplified by the fact that 323 

SPHK1 is overexpressed in NK-LGL cells. Moreover, the mechanism by which SKI-II or SKI-178 324 

induce apoptosis in NK-LGL cells is associated with increased ceramide and decreased S1P levels, 325 

consistent with inhibition of SPHK1 and in line with the predicted outcome of modulating the 326 

sphingolipid rheostat. Significantly,the apoptotic effect of SPHK1 inhibitors in NK-LGL cells was 327 

linked with decreased oncogenic JAK/STAT signaling 
87

. 328 

 329 

Acute lymphoblastic leukemia  330 

The prognosis for pediatric B-ALL and T-ALL patients has dramatically improved over the last two 331 

decades with survival rates of approximately 75-80% at 5-years. In contrast, the outcome of adult 332 

patients is much more severe 
88

. Therefore, novel targeted therapies for treatment of B- and T-ALL 333 

are required, especially for adult cases. 334 
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It was recently shown that SPHK2 has a significant role in B-ALL by regulating the expression of 335 

c-MYC. This was based on the finding that genetic ablation of SPHK2 impaired leukemogenesis in 336 

a mouse model of B-ALL and pharmacologic inhibition with ABC294640 prolonged survival in 337 

mouse xenograft models of human disease 
89

. Indeed, inhibition of SPHK2 reduced c-MYC 338 

expression in these leukemic cells and was associated with decreased acetylated K9 histone H3 339 

levels within the c-MYC gene promoter and reduced c-MYC-regulated gene expression. These 340 

findings have provided preclinical proof-of-concept for targeting SPHK2/c-MYC as a broad-based 341 

therapeutic approach in B-ALL.  342 

S1P prevents T-ALL Jurkat cell apoptosis induced by anti-Fas, TNF-α, serum deprivation and cell-343 

permeable ceramides. This is associated with reduced caspase-3 activation, a consequence of 344 

inhibiting the release of cytochrome c and Smac/DIABLO from mitochondria 
90

. Recently, we have 345 

shown that the SPHK1/2 inhibitor SKI-II 
61

 induced apoptosis of T-ALL cells, while the SPHK2-346 

selective inhibitor ROMe 
56

 induced autophagic death of these cells 
57

. SKI-II treatment induced an 347 

increase in SPHK1 protein levels in MOLT-4 cells, whereas it activated the ER stress/unfolded 348 

protein response (UPR) pathway in Jurkat and CEM-R cells as protective mechanisms in a sub-349 

population of T-ALL cells 
57

. Interestingly, we observed a synergistic effect of SKI-II with the 350 

classical chemotherapeutic drug, vincristine. In addition, we reported that SKI-II affected signaling 351 

pathways implicated in survival, proliferation, and stress response of T-ALL cells. These findings 352 

indicate that SPHK1 and/or SPHK2 are potential therapeutic targets for treating T-ALL 
57

. 353 

The overwhelming evidence suggests that SPHK1 and SPHK2 have a critical role in regulating the 354 

expression and function of the oncogene c-MYC, which is the master transcriptional regulator of 355 

glycolytic gene products essential for the Warburg effect and to which cancer cells are addicted for 356 

production of ATP and biosynthetic intermediates 
91

. The functional link between SPHKs and c-357 

MYC provides a strong rationale for targeting these enzymes in both T-ALL and B-ALL. 358 

 359 

 360 
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Acute myelogenous leukemia 361 

AML is a clonal disorder characterized by pronounced clinical and biological heterogeneity. 362 

Despite considerable advances in our understanding of pathogenesis, genomic alterations and 363 

prognostic factors, AML treatment has changed little in the last 40 years and the prognostic 364 

outcome remains poor for the majority of patients 
92

. Over the last 10 years, there have been an 365 

increasing number of signaling pathways identified for targeting with new drugs in AML.  366 

Studies on S1P and AML have shown that this bioactive lipid mobilizes intracellular Ca
2+

 in U937 367 

cells and activates NF-κB 
93

 and is capable of inhibiting apoptosis in both U937 and HL-60 cells 
90

. 368 

Importantly, several studies have identified SPHK1 as a potential drug target for AML treatment. 369 

For instance, BML-258 (SKI-I) is a micromolar potency, water-soluble, SPHK1 inhibitor and has 370 

been shown to decrease growth and survival of human AML U937 cells. This is associated with an 371 

increased ceramide : S1P ratio, cleavage of Bcl-2 and apoptosis 
27

. Indeed, the pro-apoptotic effect 372 

of BML-258 was reversed by caspase inhibitors and by overexpression of Bcl-2. BML-258 also 373 

abrogates survival signaling pathways, including ERK-1/2 and Akt. The importance of these 374 

pathways in the apoptotic activity of BML-258 was demonstrated by the finding that 375 

overexpression of constitutively active Akt protected against BML-258-induced apoptosis. 376 

Importantly, BML-258 potently induced apoptosis in leukemic blasts isolated from patients with 377 

AML but was relatively sparing of peripheral blood mononuclear leukocytes from healthy donors. 378 

Moreover, BML-258 markedly reduced growth of AML xenograft tumors. These results suggested 379 

that SPHK1 inhibitors warrant attention as potential additions to the therapeutic arsenal in AML 
27

. 380 

Subsequent studies have confirmed this conclusion, using inhibitors such as SKI-178 
94

 and SKI-II 381 

95
.  382 

SPHK1 activity has also been linked to multidrug-resistant (MDR) phenotype in AML HL-60 cells 383 

96
.  In this regard, treatment of chemosensitive HL-60 cells with either doxorubicin and etoposide  384 

produced a marked decrease in SPHK1 activity and an acute generation (around 50% increase) of 385 

the pro-apoptotic ceramide. However, doxorubicin and etoposide failed to induce apotosis of 386 
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chemoresistant HL-60/doxorubicin and HL-60/etoposide cells which overexpress MRP1 (ABCC1) 387 

and MDR1 (ABCB1), respectively. This difference in chemosensitivity can be explained by the 388 

finding that chemoresistant HL-60/doxorubicin and HL-60/etoposide cells express higher levels of 389 

SPHK1 activity and therefore are resistant to changes in ceramide levels upon treatment with these 390 

apoptotic agents. The mechanism by which SPHK1 is protective against apoptosis is linked with a 391 

reduction in ceramide levels and inhibition of mitochondrial cytochrome c efflux. Indeed, treatment 392 

of chemoresistant cells with cell-permeable ceramide led to SPHK1 inhibition and the induction of 393 

apoptosis, both of which were prevented by over-expression of SPHK1. More effective SPHK1 394 

inhibitors might overcome the chemoresistance in AML. Indeed, the SPHK inhibitor,  F-12509a 395 

increased the ceramide:S1P ratio and promoted apoptosis of  both chemosensitive and 396 

chemoresistant AML cell lines with equal sensitivity 
96

.  397 

Taken together, the evidence suggests that the regulation of the intrinsic apoptotic pathway in AML 398 

by SPHK1 and in particular the inhibition of the proteolytic processing of the oncogene, Bcl-2 is a 399 

critical component in promoting AML cell survival and chemoresistance.  This therefore serves as 400 

another example of the important role that SPHK1 plays in augmenting oncogene function in 401 

hematological cancers. 402 

 403 

Non-Hodgkin lymphomas 404 

The outcome for patients with NHL has improved substantially over the past four decades. 405 

However, there remain NHL subtypes with a very poor prognosis. Interestingly, SPHK1 protein and 406 

mRNA levels were higher in 44 NHL patients than in controls (25 individuals with reactive 407 

lymphoid hyperplasia) and there was a clear trend toward increasing SPHK1 mRNA levels and 408 

clinical grade in this cancer 
25

. 409 

Mantle cell lymphoma (MCL) is a distinct subset of B-cell non-Hodgkin lymphoma (NHL) 410 

characterized by the t(11;14) (q13;q32) chromosomal translocation and which results in 411 

overexpression of cyclin D1 and deregulation of the cell cycle 
97

. Although intensive 412 
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polychemotherapy schemes and immunotherapy with anti-CD20 monoclonal antibody (Rituximab) 413 

have improved the outcome of patients with MCL 
98

, no standard of care is currently available for 414 

this cancer which remains incurable 
99

. Several signal transduction pathways are aberrantly 415 

activated in MCL, including NF-κB, PI3K/Akt/mTOR and JAK3/STAT3
100

. In addition, S1P1 416 

expression levels are elevated in MCL. In particular, this receptor was strongly expressed on the 417 

surface of small lymphocytes forming primary lymphoid follicles and in the mantle zone of 418 

secondary lymphoid follicles 
101

. Interestingly, FTY720 (fingolimod, a pro-drug and functional 419 

antagonist of S1P1 used in the treatment of relapsing and remittent multiple sclerosis 
102

) induced 420 

the caspase-independent death of primary MCL tumor cells and MCL cell lines in vitro. Moreover, 421 

FTY720 treatment resulted in the down-regulation of cyclin D1 and this was accompanied by an 422 

accumulation of cells in G0-G1 and G2-M phases of the cell cycle with a concomitant decrease in S-423 

phase entry. In addition, cytotoxicity was associated with a decrease in phosphorylated Akt levels. 424 

Most importantly, the in vivo therapeutic efficacy of FTY720 was demonstrated in mice 425 

xenografted with Jeko human MCL cell line 
103

. These effects of FTY720 are likely mediated by its 426 

inhibition of SPHK1 
104

 or activation of PP2A 
105

. 427 

Overexpression of S1P2 was recently reported in several types of NHL, including follicular 428 

lymphoma (FL), DLBCL, MCL and marginal-zone lymphoma (MZL) 
106

. One of the most 429 

aggressive subtypes of NHL is activated B cell�like DLBCL (ABC-DLBCL). This cancer remains a 430 

challenge for effective therapy 
107

. In this regard, STAT3 is known to be activated in ABC-DLBCL 431 

cells and might be of significant clinical importance in terms of disease progression
108

. Intriguingly, 432 

S1P1 can activate STAT3 through JAK2 
109

 and some ABC-DLBCL patients exhibit elevated S1P1 433 

and activated STAT3 levels. The importance of this finding was exemplified by the finding that 434 

treatment with S1P1 shRNA or FTY720 down-regulated STAT3 activity and caused tumor growth 435 

inhibition in xenografts or syngeneic mouse models of lymphoma 
110

 (Figure 4). Moreover, the 436 

overexpression of S1P1 and high levels of phosphorylated STAT3 are associated with poor 437 

prognosis in rituximab-treated DLBCL 
111

. Very recently, it has been documented that S1P1 is 438 
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overexpressed in 54.2% of 24 cases with primary testicular DLBCL and S1P1 levels correlated with 439 

STAT3 phosphorylation 
112

.  440 

Another rare and extremely aggressive variant of DLBCL is primary effusion lymphoma (PEL),  a 441 

human herpes virus 8 (HHV8)-positive neoplasm that presents as an effusion within pleural or 442 

peritoneal cavities with no detectable tumor in individuals with human immunodeficiency virus 443 

infection or other immune deficiencies. In most cases, PEL cells also harbor the Epstein-Barr virus 444 

(EBV) genome 
113

. PEL progresses rapidly despite chemotherapy, with a median survival of around 445 

6 months 
114

. It has been reported that ABC294640 induced dose-dependent caspase cleavage and 446 

apoptosis in HHV8
+
 patient-derived PEL cells, thereby implicating a role for SPHK2 in this cancer.  447 

Also, ABC294640 down-regulated signaling pathways that are known for being activated in PEL 448 

and which are regulated by S1P, including MEK-ERK-1/2, PI3K/Akt/mTOR and NF-κB 
115

. The 449 

role of SPHK2 was validated by induction of PEL cell apoptosis using SPHK2-specific siRNA. In 450 

addition, pharmacological inhibition of SPHK1 in PEL cells was associated with a dose-dependent 451 

accumulation of pro-apoptotic ceramide and a reduction of intracellular S1P. Finally, in vivo 452 

administration of ABC294640 induces tumor regression in an established human PEL xenograft 453 

model 
115

. Sequential Phase 1 and 2a trials are on-going to identify the maximum tolerated dose and 454 

to evaluate safety, tolerability, toxicity, pharmacokinetics and pharmacodynamics of ABC294640 in 455 

patients with PEL (NCT02229981). 456 

Taken together the data support a major role for both SPHK1 and SPHK2 and S1P receptor 457 

signaling systems in NHL, particularly with respect to the regulation of oncogenic JAK/STAT and 458 

Akt pro-survival functions.  This might involve signaling loops involving SPHK1 and S1P that are 459 

subsequently released to act in an autocrine or paracrine manner to promote S1P1 receptor-460 

dependent JAK/STAT regulation of NHL growth. 461 

 462 

 463 

 464 
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Multiple myeloma 465 

New classes of therapeutic agents have displayed remarkable efficacy in MM patients. 466 

Nevertheless, novel therapeutic approaches are still urgently needed to further improve patient 467 

outcome. The bone marrow microenvironment (e.g. stromal cells and immune cells) plays a central 468 

role in MM pathogenesis, by promoting tumor cell growth, survival and chemo-resistance 
116

. A 469 

possible involvement of SPHKs in MM cell survival and chemo-resistance was first highlighted 10 470 

years ago when it was shown that FTY720 was cytotoxic against both drug-sensitive and drug-471 

resistant MM cell lines. This was also demonstrated in isolated tumor cells from MM patients who 472 

did not respond to conventional agents 
117

. In this regard, FTY720 has been shown to induce 473 

caspase activation and poly(ADP-ribose) polymerase (PARP) cleavage. Importantly, FYT720 474 

retained its cytotoxicity even in the presence of interleukin-6 (IL-6) or insulin-like growth factor-1 475 

(IGF-1). It should be noted that IL-6 and IGF-1 are two of the most important cytokines, released 476 

by the bone marrow microenvironment, that support growth and survival of MM cells 
118

. 477 

Importantly, growth of MM cells adherent to bone marrow stromal cells was significantly inhibited 478 

by FTY720 and this was associated with down-regulation of signaling pathways critical for MM 479 

pathobiology, including PI3K/Akt/mTOR, MEK/ERK-1/2, STAT3 and NK-κB 
117

.  480 

Recent findings have highlighted that SPHK1 protein expression is elevated in MM cells and its 481 

inhibition resulted in apoptotic death of cancer cells due to the prevention of receptor tyrosine 482 

kinase phosphorylation and activation of death-associated protein kinase 1 (DAPK1) 
119

.  483 

S1P might also play an important role in MM cell adhesion, which is dependent on Į4ȕ1 integrin 484 

and is crucial for the progression of the disease 
120

. In this context, Į4ȕ1-dependent MM cell 485 

adhesion is up-regulated by the chemokine, CXCL12 
121

. S1P enhances Į4ȕ1-mediated MM cell 486 

adhesion and transendothelial migration stimulated by CXCL12 
122

. In particular, S1P promotes the 487 

generation of high-affinity Į4ȕ1 that efficiently binds Į4ȕ1 ligand and vascular cell adhesion 488 

molecule 1 (VCAM-1). Importantly, this is associated with an S1P-induced increase in talin-ȕ1 489 

integrin association. Furthermore, S1P cooperates with CXCL12 in enhancing Į4ȕ1-dependent 490 
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adhesion and spreading. The mechanism of this cooperation involves activation of the dedicator of 491 

cytokinesis 2 (DOCK2)-Rac1 pathway which is required for stimulation of MM cell adhesion via 492 

Į4ȕ1. The pathophysiological significance of these findings is evident from in vivo studies, which 493 

have demonstrated that S1P contributed to optimizing the interactions of MM cells with the bone 494 

marrow microvasculature and for their lodging inside the bone marrow 
122

.  495 

More recently, SPHK2 has been found to be overexpressed in MM cell lines and in primary human 496 

bone marrow MM cells 
123

. Down-regulation of SPHK2 by shRNA or treatment with ABC294640 497 

inhibited proliferation and induced caspase 3-mediated apoptosis in both MM cell lines and primary 498 

cells and this can be achieved even in the presence of bone marrow stromal cells. Furthermore, 499 

ABC294640 directed c-MYC and Mcl-1 for proteasome degradation and increased pro-apoptotic 500 

Noxa gene transcription and protein expression and suppressed the growth of human MM.1S cells 501 

in a mouse xenograft cancer model 
123

.  502 

Overall, these findings have provided the preclinical framework for clinical trials of SPHK 503 

inhibitors, used alone and/or combined with conventional and novel therapies to improve patient 504 

outcome in MM. 505 

 506 

Conclusions and future perspectives 507 

Over the last five years there have been major advances in understanding the role of S1P and 508 

SPHKs in hematological malignancies. Aberrant regulation of the sphingolipid metabolism is 509 

involved in the progression of malignancy and cancer cell drug-resistance. Therefore, a promising 510 

approach for targeted treatment of hematological malignancies is the development of SPHK 511 

inhibitors that increase pro-apoptotic sphingolipids such as ceramides while suppressing the 512 

synthesis of the anti-apoptotic S1P.  513 

Suppression of SPHK1 by genetic ablation (siRNA or gene knockout murine models) or chemical 514 

inhibition have established the important role of this enzyme in cancer. Although our knowledge of 515 

SPHK2 is more limited, the burgeoning evidence also suggests a role in cancer. Therefore, highly 516 
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selective and potent SPHK2 inhibitors are eagerly awaited in order to provide a means for a more 517 

thorough interrogation of this enzyme in hematological cancers. SPHK1 and SPHK2 may not be the 518 

only relevant targets in cancer cells as the pathways regulating these enzymes and down-stream 519 

targets are also worthy of therapeutic targeting. The simultaneous inhibition of both SPHK1 and 520 

SPHK2 activity also warrants appraisal 
5
. 521 

Finally, the potential for combining SPHK inhibitors (or other sphingolipid pathway components 522 

deregulated in cancer) with currently available therapeutic agents (either targeted or classic 523 

chemotherapeutic drugs) holds significant promise for improved disease-treatment outcome. 524 

However, the reported combinatory effects are scarce at present. One notable exception concerns 525 

CML. In this regard, there are impressive findings concerning the re-sensitization of imatinib-526 

resistant CML cells by inhibiting SPHK1 activity 
5
. It is in this disorder that the greatest 527 

translational advances will most likely be made. However, it is clear that better and more selective 528 

and potent SPHK inhibitors are required for the translation to the clinic. These compounds are 529 

already under development and it is hoped they will be tested in clinical trials in the near future. 530 
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Figure legends 1014 

Figure 1. Sphingolipid metabolism. Ceramide can be synthesized de novo or generated through 1015 

the breakdown of sphingomyelin or complex glycosphingolipids (not shown) or by the acetylation 1016 

of sphingosine. Phosphorylation of sphingosine by SPHK generates S1P. SMase: 1017 

Sphingomyelinase. SMsynthase: Sphingomyelin synthase. 1018 

 1019 

Figure 2. Domain organization of SPHK isoforms and splice variants. Blue represents 1020 

untranslated exon regions while grey represents translated exon regions. All SPHK isoforms have 1021 

five highly conserved regions: a catalytic domain (yellow), a lipid binding domain (black) and three 1022 

ATP binding domains (red), one of which is split across an intron.  1023 

 1024 

Figure 3.  Role of SPHK/S1P signaling in CML. Imatinib resistance (red arrows) in CML is 1025 

associated with elevated expression of BCR/ABL1 and SPHK1 (which may involve increased 1026 

PI3K/Akt/mTOR, ERK-1/2 and JAK2 signaling).  Over-expression of SPHK1 enhances 1027 

BCR/ABL1 levels via S1P2-mediated inhibition of PP2A, thereby preventing the dephosphorylation 1028 

of BCR/ABL1 and reducing subsequent proteasomal degradation of BCR/ABL1.  Over-expressed 1029 

SPHK1 also maintains expression of the pro-survival protein, Mcl-1. Pharmacological inhibition of 1030 

SPHK1/S1P2 or activation of PP2A (black double arrows) counteracts these events and restores 1031 

imatinib sensitivity. 1032 

 1033 

Figure 4. Role of S1P1 in NHL sub-type, activated ABC-DLBCL. 1034 

S1P1 and STAT3 are up-regulated in ABC-DLBCL and associated with poor prognosis.  1035 

Knockdown of S1P1 using shRNA indirectly reduces STAT3 phosphorylation levels and inhibits 1036 

tumor growth. The pro-drug FTY720 is phosphorylated by SPHK2 to FTY720-phosphate. This is 1037 

released, binds to S1P1 and induces proteasomal degradation of this receptor. The reduction of S1P1 1038 

levels inhibits tumor growth in vitro and in vivo. 1039 



Table 1. The roles of SPHK and S1P in malignant hematological disorders.  

Disorder Component   Roles 

CML SPHK1 Enhanced expression by BCR/ABL1 and vice versa
79

 

Inhibition results in cytotoxicity and enhances imatinib 

sensitivity
68

 

 S1P Up-regulates anti-apoptotic  Mcl-1
79

 

Binding to S1P2 inhibits PP2A-dependent BCR/ABL1 

dephosphorylation 
80

 

T-LGL SPHK1 Activity stimulated by PDGF. Inhibition results in apoptosis 

65
 

NK-LGL SPHK1 Enhanced expression. Inhibition results in apoptosis 
85

 

AML SPHK1 Inhibition results in cytotoxicity of U937 xenografts in mice 

27
 

Inhibition induces HL-60 cell cytotoxicity and sensitizes 

chemoresistant HL-60 cells 
93

 

 S1P Elicits mitogenic signals through NF-κB activation in U937 

cells 
90

 

Inhibits apoptosis in U937 and HL-60 cells 
88

 

B-ALL SPHK2 Oncogenic in mouse through c-MYC 
87

 

T-ALL SPHK1 Inhibition results in apoptosis 
57

 

 SPHK2 Inhibition results in autophagic cell death 
57

 

 S1P Induces apoptosis
88

 

NHL SPHK1 Enhanced expression 
25

 

PEL SPHK2 Inhibition results in apoptosis 
112

 

 S1P Regulates ERK 1/2, PI3K/Akt/mTOR, and NF-κB signaling 

112
 

MM SPHK1 Inhibition prevents receptor tyrosine kinase phosphorylation 

and activation of DAPK1  
116

 

 SPHK2 Over-expressed in MM cells. Inhibition results in down-

regulation of cell proliferation and enhanced apoptosis 
120

 

 S1P Plays a role in MM cell adhesion 
117
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