399 research outputs found

    Steep rise in norovirus cases and emergence of a new recombinant strain GII.P16-GII.2, Germany, winter 2016

    Get PDF
    Since early November 2016, the number of laboratory-confirmed norovirus infections reported in Germany has been increasing steeply. Here, we report the detection and genetic characterisation of an emerging norovirus recombinant, GII.P16-GII.2. This strain was frequently identified as the cause of sporadic cases as well as outbreaks in nine federal states of Germany. Our findings suggest that the emergence of GII.P16-GII.2 contributed to rising case numbers of norovirus gastroenteritis in Germany

    The Aurora B specificity switch is required to protect from non-disjunction at the metaphase/anaphase transition

    Get PDF
    The Aurora B abscission checkpoint delays cytokinesis until resolution of DNA trapped in the cleavage furrow. This process involves PKCε phosphorylation of Aurora B S227. Assessing if this PKCε-Aurora B module provides a more widely exploited genome-protective control for the cell cycle, we show Aurora B phosphorylation at S227 by PKCε also occurs during mitosis. Expression of Aurora B S227A phenocopies inhibition of PKCε in by-passing the delay and resolution at anaphase entry that is associated with non-disjunction and catenation of sister chromatids. Implementation of this anaphase delay is reflected in PKCε activation following cell cycle dependent cleavage by caspase 7; knock-down of caspase 7 phenocopies PKCε loss, in a manner rescued by ectopically expressing/generating a free PKCε catalytic domain. Molecular dynamics indicates that Aurora B S227 phosphorylation induces conformational changes and this manifests in a profound switch in specificity towards S29 TopoIIα phosphorylation, a response necessary for catenation resolution during mitosis.This work was supported by the Francis Crick Institute, which receives its core funding from Cancer Research UK (FC001130), the UK Medical Research Council (FC001130) and the Wellcome Trust (FC001130).Peer reviewe

    Tissue Microenvironments Define and Get Reinforced by Macrophage Phenotypes in Homeostasis or during Inflammation, Repair and Fibrosis

    Get PDF
    Current macrophage phenotype classifications are based on distinct in vitro culture conditions that do not adequately mirror complex tissue environments. In vivo monocyte progenitors populate all tissues for immune surveillance which supports the maintenance of homeostasis as well as regaining homeostasis after injury. Here we propose to classify macrophage phenotypes according to prototypical tissue environments, e.g. as they occur during homeostasis as well as during the different phases of (dermal) wound healing. In tissue necrosis and/or infection, damage- and/or pathogen-associated molecular patterns induce proinflammatory macrophages by Toll-like receptors or inflammasomes. Such classically activated macrophages contribute to further tissue inflammation and damage. Apoptotic cells and antiinflammatory cytokines dominate in postinflammatory tissues which induce macrophages to produce more antiinflammatory mediators. Similarly, tumor-associated macrophages also confer immunosuppression in tumor stroma. Insufficient parenchymal healing despite abundant growth factors pushes macrophages to gain a profibrotic phenotype and promote fibrocyte recruitment which both enforce tissue scarring. Ischemic scars are largely devoid of cytokines and growth factors so that fibrolytic macrophages that predominantly secrete proteases digest the excess extracellular matrix. Together, macrophages stabilize their surrounding tissue microenvironments by adapting different phenotypes as feed-forward mechanisms to maintain tissue homeostasis or regain it following injury. Furthermore, macrophage heterogeneity in healthy or injured tissues mirrors spatial and temporal differences in microenvironments during the various stages of tissue injury and repair. Copyright (C) 2012 S. Karger AG, Base

    I Going Away. I Going Home. : Austin Clarke\u27s Leaving this Island Place

    Get PDF
    Austin Clarke’s “Leaving This Island Place” is one of scores of Caribbean autobiographical works that focus on a bright, young, lower-class islander leaving his/her small island place and setting out on “Eldorado voyages.” The narrative of that journey away from home to Europe or Canada or the United States and the later efforts to return may be said to be the Caribbean story, as suggested in the subtitle of Wilfred Cartey’s study of Caribbean literature, Whispers from the Caribbean: I Going Away, I Going Home, which argues that while in Caribbean literature there is much movement away, there is also a body of literature in which “the notion of ‘away’ and images of movement out are replaced by images of return” (xvi). Traditionally, however, the first autobiographical works, such as George Lamming’s In the Castle of My Skin, V. S. Naipaul’s A House for Mr. Biswas, Merle Hodge’s Crick Crack, Monkey, Jamaica Kincaid’s Annie John, Michelle Cliff’s No Telephone to Heaven, Edwidge Danticat’s Breath, Eyes, Memory, and Elizabeth Nunez’s Beyond the Limbo Silence, have focused on the childhood in the Caribbean and the journey away—or at least the preparation for that journey. Such is the case with Clarke’s “Leaving This Island Place.

    Hsa-miR-125a-3p and hsa-miR-125a-5p are downregulated in non-small cell lung cancer and have inverse effects on invasion and migration of lung cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Two mature microRNAs (miRNAs), hsa-miR-125a-3p and hsa-miR-125a-5p (collectively referred to as hsa-miR-125a-3p/5p), are derived from 3' and 5' ends of pre-miR-125a, respectively. Although impaired regulation of hsa-miR-125a-5p has been observed in some tumors, the role of this miRNA in invasion and metastasis remains unclear, and few studies have examined the function of hsa-miR-125a-3p. In order to characterize the functions of hsa-miR-125a-3p/5p in invasion and metastasis of non-small cell lung cancer (NSCLC), we investigated the relationships between hsa-miR-125a-3p/5p expression and lymph node metastasis in NSCLC tissues. We also explored the impact of expression of these miRNAs on invasive and migratory capabilities of lung cancer cells.</p> <p>Methods</p> <p>Expression of hsa-miR-125a-3p/5p in NSCLC tissues was explored using real-time PCR. The relationships between hsa-miR-125a-3p/5p expression and pathological stage or lymph node metastasis were assessed using the Spearman correlation test. For in vitro studies, lung cancer cells were transfected with sense and antisense 2'-O-methyl oligonucleotides for gain-of-function and loss-of-function experiments. Transwell experiments were performed to evaluate cellular migration and invasion.</p> <p>Results</p> <p>Expression of hsa-miR-125a-3p/5p was lower in NSCLC tissues than in adjacent normal lung tissues (LAC). Furthermore, the results from the Spearman correlation test showed a negative relationship between hsa-miR-125a-3p expression and pathological stage or lymph node metastasis and an inverse relationship between hsa-miR-125a-5p expression and pathological stage or lymph node metastasis. In vitro gain-of-function experiments indicated that hsa-miR-125a-3p and hsa-miR-125a-5p function in an opposing manner, suppressing or enhancing cell migration and invasion in A549 and SPC-A-1 cell lines, respectively. These opposing functions were further validated by suppression of hsa-miR-125a-3p and hsa-miR-125a-5p expression in loss-of-function experiments.</p> <p>Conclusion</p> <p>Hsa-miR-125a-3p and hsa-miR-125a-5p play distinct roles in regulation of invasive and metastatic capabilities of lung cancer cells, consistent with the opposing correlations between the expression of these miRNAs and lymph node metastasis in NSCLC. These results provide new insights into the roles of miR-125a family members in the development of NSCLC.</p

    Genomic Expression Libraries for the Identification of Cross-Reactive Orthopoxvirus Antigens

    Get PDF
    Increasing numbers of human cowpox virus infections that are being observed and that particularly affect young non-vaccinated persons have renewed interest in this zoonotic disease. Usually causing a self-limiting local infection, human cowpox can in fact be fatal for immunocompromised individuals. Conventional smallpox vaccination presumably protects an individual from infections with other Orthopoxviruses, including cowpox virus. However, available live vaccines are causing severe adverse reactions especially in individuals with impaired immunity. Because of a decrease in protective immunity against Orthopoxviruses and a coincident increase in the proportion of immunodeficient individuals in today's population, safer vaccines need to be developed. Recombinant subunit vaccines containing cross-reactive antigens are promising candidates, which avoid the application of infectious virus. However, subunit vaccines should contain carefully selected antigens to confer a solid cross-protection against different Orthopoxvirus species. Little is known about the cross-reactivity of antibodies elicited to cowpox virus proteins. Here, we first identified 21 immunogenic proteins of cowpox and vaccinia virus by serological screenings of genomic Orthopoxvirus expression libraries. Screenings were performed using sera from vaccinated humans and animals as well as clinical sera from patients and animals with a naturally acquired cowpox virus infection. We further analyzed the cross-reactivity of the identified immunogenic proteins. Out of 21 identified proteins 16 were found to be cross-reactive between cowpox and vaccinia virus. The presented findings provide important indications for the design of new-generation recombinant subunit vaccines
    corecore