60 research outputs found

    Methyl group dynamics in a confined glass

    Full text link
    We present a neutron scattering investigation on methyl group dynamics in glassy toluene confined in mesoporous silicates of different pore sizes. The experimental results have been analysed in terms of a barrier distribution model, such a distribution following from the structural disorder in the glassy state. Confinement results in a strong decreasing of the average rotational barrier in comparison to the bulk state. We have roughly separated the distribution for the confined state in a bulk-like and a surface-like contribution, corresponding to rotors at a distance from the pore wall respectively larger and smaller than the spatial range of the interactions which contribute to the rotational potential for the methyl groups. We have estimated a distance of 7 Amstrong as a lower limit of the interaction range, beyond the typical nearest-neighbour distance between centers-of-mass (4.7 Amstrong).Comment: 5 pages, 3 figures. To be published in European Physical Journal E Direct. Proceedings of the 2nd International Workshop on Dynamics in Confinemen

    Circulation of human influenza viruses and emergence of Oseltamivir-resistant A(H1N1) viruses in Cameroon, Central Africa

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While influenza surveillance has increased in most developing countries in the last few years, little influenza surveillance has been carried out in sub-Saharan Africa and no information is available in Central Africa. The objective of this study was to assess the prevalence of influenza viruses circulating in Yaounde, Cameroon and determine their antigenic and genetic characteristics.</p> <p>Methods</p> <p>Throat and/or nasal swabs were collected from November 2007 to October 2008 from outpatients with influenza-like illness (ILI) in Yaounde, Cameroon and analyzed by two different techniques: a one-step real time reverse transcription-polymerase chain reaction (RT-PCR) and virus isolation in MDCK cells. Typing and subtyping of virus isolates was performed by hemagglutination inhibition (HI), and viruses were sent to the WHO Collaborating Centre in London, UK for further characterization and analyses of antiviral resistance by enzyme inhibition assay and nucleotide sequencing.</p> <p>Results</p> <p>A total of 238 patients with ILI were sampled. During this period 70 (29%) samples were positive for influenza by RT-PCR, of which only 26 (11%) were positive by virus isolation. By HI assay, 20 of the 26 isolates were influenza type A (10 H3N2 and 10 H1N1) and 6 were influenza type B (2 B/Victoria/2/87 lineage and 4 B/Yagamata/16/88 lineage). Seven (70%) of the H1N1 isolates were shown to be resistant to oseltamivir due to a H275Y mutation.</p> <p>Conclusions</p> <p>This study confirmed the circulation of influenza A(H1N1), A(H3N2) and B viruses in the human population in Central Africa and describes the emergence of oseltamivir-resistant A(H1N1) viruses in Central Africa.</p

    Environmental Predictors of Seasonal Influenza Epidemics across Temperate and Tropical Climates

    Get PDF
    Human influenza infections exhibit a strong seasonal cycle in temperate regions. Recent laboratory and epidemiological evidence suggests that low specific humidity conditions facilitate the airborne survival and transmission of the influenza virus in temperate regions, resulting in annual winter epidemics. However, this relationship is unlikely to account for the epidemiology of influenza in tropical and subtropical regions where epidemics often occur during the rainy season or transmit year-round without a well-defined season. We assessed the role of specific humidity and other local climatic variables on influenza virus seasonality by modeling epidemiological and climatic information from 78 study sites sampled globally. We substantiated that there are two types of environmental conditions associated with seasonal influenza epidemics: β€œcold-dry” and β€œhumid-rainy”. For sites where monthly average specific humidity or temperature decreases below thresholds of approximately 11–12 g/kg and 18–21Β°C during the year, influenza activity peaks during the cold-dry season (i.e., winter) when specific humidity and temperature are at minimal levels. For sites where specific humidity and temperature do not decrease below these thresholds, seasonal influenza activity is more likely to peak in months when average precipitation totals are maximal and greater than 150 mm per month. These findings provide a simple climate-based model rooted in empirical data that accounts for the diversity of seasonal influenza patterns observed across temperate, subtropical and tropical climates

    The impact range for smooth wall–liquid interactions in nanoconfined liquids

    Get PDF
    Bulk and nanoconfined liquids have initially very different physics; for instance, nanoconfined liquids show stratification and position-dependent relaxation processes. A number of similarities between bulk and nanoconfined liquids have nevertheless been reported in computer simulations during the last decade. Inspired by these observations, we present results from molecular dynamics computer simulations of three nanoconfined liquids (i.e., single-component Lennard-Jones (LJ) liquid, Kob-Andersen binary LJ mixture, and an asymmetric dumbbell model) demonstrating also a microscopic similarity between bulk and nanoconfined liquids. The results show that the interaction range for the wall-liquid and liquid-liquid interactions of the nanoconfined liquid are identical to the bulk liquid as long as the liquid remains "Roskilde simple" in nanoconfinement, i.e., the liquid has strong correlations between virial and potential energy equilibrium fluctuations in the NVT ensemble.Comment: 8 page

    Unveiling thermal transitions of polymers in subnanometre pores

    Get PDF
    The thermal transitions of confined polymers are important for the application of polymers in molecular scale devices and advanced nanotechnology. However, thermal transitions of ultrathin polymer assemblies confined in subnanometre spaces are poorly understood. In this study, we show that incorporation of polyethylene glycol (PEG) into nanochannels of porous coordination polymers (PCPs) enabled observation of thermal transitions of the chain assemblies by differential scanning calorimetry. The pore size and surface functionality of PCPs can be tailored to study the transition behaviour of confined polymers. The transition temperature of PEG in PCPs was determined by manipulating the pore size and the pore–polymer interactions. It is also striking that the transition temperature of the confined PEG decreased as the molecular weight of PEG increased

    Influenza activity in Cambodia during 2006-2008

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is little information about influenza disease among the Cambodian population. To better understand the dynamics of influenza in Cambodia, the Cambodian National Influenza Center (NIC) was established in August 2006. To continuously monitor influenza activity, a hospital based sentinel surveillance system for ILI (influenza like illness) with a weekly reporting and sampling scheme was established in five sites in 2006. In addition, hospital based surveillance of acute lower respiratory infection (ALRI) cases was established in 2 sites.</p> <p>Methods</p> <p>The sentinel sites collect weekly epidemiological data on ILI patients fulfilling the case definition, and take naso-pharyngeal specimens from a defined number of cases per week. The samples are tested in the Virology Unit at the Institut Pasteur in Phnom Penh. From each sample viral RNA was extracted and amplified by a multiplex RT-PCR detecting simultaneously influenza A and influenza B virus. Influenza A viruses were then subtyped and analyzed by hemagglutination inhibition assay. Samples collected by the ALRI system were tested with the same approach.</p> <p>Results</p> <p>From 2006 to 2008, influenza circulation was observed mainly from June to December, with a clear seasonal peak in October shown in the data from 2008.</p> <p>Conclusion</p> <p>Influenza activity in Cambodia occurred during the rainy season, from June to December, and ended before the cool season (extending usually from December to February). Although Cambodia is a tropical country geographically located in the northern hemisphere, influenza activity has a southern hemisphere transmission pattern. Together with the antigenic analysis of the circulating strains, it is now possible to give better influenza vaccination recommendation for Cambodia.</p

    Seasonal Oscillation of Human Infection with Influenza A/H5N1 in Egypt and Indonesia

    Get PDF
    As of June 22, 2011, influenza A/H5N1 has caused a reported 329 deaths and 562 cases in humans, typically attributed to contact with infected poultry. Influenza H5N1 has been described as seasonal. Although several studies have evaluated environmental risk factors for H5N1 in poultry, none have considered seasonality of H5N1 in humans. In addition, temperature and humidity are suspected to drive influenza in temperate regions, but drivers in the tropics are unknown, for H5N1 as well as other influenza viruses. An analysis was conducted to determine whether human H5N1 cases occur seasonally in association with changes in temperature, precipitation and humidity. Data analyzed were H5N1 human cases in Indonesia (nβ€Š=β€Š135) and Egypt (nβ€Š=β€Š50), from January 1, 2005 (Indonesia) or 2006 (Egypt) through May 1, 2008 obtained from WHO case reports, and average daily weather conditions obtained from NOAA's National Climatic Data Center. Fourier time series analysis was used to determine seasonality of cases and associations between weather conditions and human H5N1 incidence. Human H5N1 cases in Indonesia occurred with a period of 1.67 years/cycle (p<0.05) and in Egypt, a period of 1.18 years/cycle (pβ‰…0.10). Human H5N1 incidence in Egypt, but not Indonesia, was strongly associated with meteorological variables (ΞΊ2β‰₯0.94) and peaked in Egypt when precipitation was low, and temperature, absolute humidity and relative humidity were moderate compared to the average daily conditions in Egypt. Weather conditions coinciding with peak human H5N1 incidence in Egypt suggest that human infection may be occurring primarily via droplet transmission from close contact with infected poultry

    Benzene confined in MCM-41 below its melting point : A proton NMR study

    No full text
    Benzene confined in MCM-41 (3 nm) was studied by the mean of the line widths, line shapes, T1 et T2 nuclear magnetic resonance (NMR) measurements. On the contrary to the bulk, no evidence of a sharp phase transition in the confined system can be obtained from the temperature dependence of the studied parameters. At room temperature, the dynamics of the confined liquid is significantly reduced. At lower temperature, it slows down but is still much faster than the bulk crystal, suggesting the formation of a highly diffusive solid or a highly viscous liquid. Moreover, no obvious distinction between the surface molecules and the molecules at the centre of the pores is obtained
    • …
    corecore