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Abstract

Human influenza infections exhibit a strong seasonal cycle in temperate regions. Recent laboratory and epidemiological
evidence suggests that low specific humidity conditions facilitate the airborne survival and transmission of the influenza
virus in temperate regions, resulting in annual winter epidemics. However, this relationship is unlikely to account for the
epidemiology of influenza in tropical and subtropical regions where epidemics often occur during the rainy season or
transmit year-round without a well-defined season. We assessed the role of specific humidity and other local climatic
variables on influenza virus seasonality by modeling epidemiological and climatic information from 78 study sites sampled
globally. We substantiated that there are two types of environmental conditions associated with seasonal influenza
epidemics: ‘‘cold-dry’’ and ‘‘humid-rainy’’. For sites where monthly average specific humidity or temperature decreases
below thresholds of approximately 11–12 g/kg and 18–21uC during the year, influenza activity peaks during the cold-dry
season (i.e., winter) when specific humidity and temperature are at minimal levels. For sites where specific humidity and
temperature do not decrease below these thresholds, seasonal influenza activity is more likely to peak in months when
average precipitation totals are maximal and greater than 150 mm per month. These findings provide a simple climate-
based model rooted in empirical data that accounts for the diversity of seasonal influenza patterns observed across
temperate, subtropical and tropical climates.
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Introduction

Influenza exerts a significant health burden on human

populations across temperate, subtropical and tropical regions

[1]. The striking seasonal pattern that characterizes influenza in

temperate populations has long suggested a causal link between

seasonal fluctuations in climatic and social factors and influenza

transmission [2–4]. Temperate regions of the northern and

southern hemispheres are characterized by highly synchronized

annual influenza epidemics during their respective winter months

[5,6]. In contrast, influenza seasonal characteristics are more

diverse in tropical and subtropical regions; some sites experience

annual epidemics coinciding with the local rainy season [7–11],

whereas others are characterized by semi-annual epidemics or

year-round influenza activity without well-defined influenza

seasons [7,12,13].

Recent epidemiological studies indicate that low levels of

specific humidity are associated with the onset of pandemic and

epidemic influenza in the US [14,15], consistent with laboratory

experiments and animal models suggesting that low specific

humidity favors virus survival and aerosol transmission [16–17].

There are several alternative explanations for the winter seasonal

transmission of influenza in temperate regions, including the

inhibition of host immune function due to decreased exposure to

solar radiation [18,19], and the inhibition of mucociliary clearance

by the inhalation of cold-dry air [20]. Person-to-person contact

rates may also strengthen in the winter due to increased indoor

crowding, modulated by school terms [21]. There are few

biological explanations for the association between precipitations

and influenza activity reported in some tropical and subtropical

regions, although rainy conditions may also favor indoor crowding

[4].

Although it is common for epidemiological studies to examine

relationships between seasonal influenza activity and climatic

factors for individual sites, few studies have assessed the

consistency of these relationships across a broad range of

temperate, subtropical and tropical sites. A recent study evidenced

a link between influenza and temperature based on aggregate

country-level data, but did not characterize the geographical and

climatic boundaries that define regions experiencing different
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influenza seasonality patterns [22]. Here we investigate both

relative and absolute associations between climatic factors and the

timing of seasonal influenza epidemics for 78 individual sites

sampled globally [23]. We develop models that predict the month

of peak influenza activity for each study site as a function of

climatic variables and identify climatic thresholds accounting for

the diversity of influenza seasonality patterns observed globally.

Methods

Data
Influenza epidemiological data. We used a recently

developed global database that provides information on the

month of maximum influenza activity (‘‘influenza peaks’’) for 78

sites worldwide, of which 39% were located in the tropics. A

detailed description of the database is provided in the Supplement

and [23], and is briefly summarized below.

The data were compiled based on a systematic literature review

of published influenza and respiratory virus surveillance studies,

reporting weekly or monthly laboratory-confirmed influenza cases

for a period of 12 consecutive months or more, augmented with

electronic data from regional or national influenza surveillance

schemes. Studies focused on the 2009 A/H1N1 pandemic virus

were excluded to restrict the analysis to seasonal patterns of inter-

pandemic influenza.

We identified 85 studies matching our inclusion criteria,

encompassing 78 sites in 40 countries sampled during the period

1975–2008, with median study duration of 2 years (Figure 1). A

majority of study sites (76%) represented a specific city rather than

a state, province, or region. The 24% of study sites representing

regional level data encompassed areas that were relatively small

and homogeneous with respect to climate, including countries

such as Italy and the Republic of Korea; states within large

countries such as Michigan, USA or Victoria, Australia; climato-

logically-homogeneous regions in Peru; provinces within Thai-

land; multiple cities in northern Argentina or in Taiwan; and a

subtropical island in Japan.

For sites with multiple years of data, the peak influenza month

of each year was determined and the average month of peak

influenza was calculated. Because some sites were characterized by

semi-annual influenza activity, influenza peaks separated by four

months or greater were considered distinct influenza seasons (see

Supplement for more information). Indeed, 17 sites (22% of the

dataset) concentrated in East and South-East Asia, and equatorial

regions of Central and South America, were characterized by two

distinct influenza peaks within the year (Figure 1). Of these 17 sites

with semi-annual influenza peaks, 15 had a primary peak (present

in all study years) and a secondary peak (present in a subset of

years), while primary and secondary influenza peaks were not

distinguishable in two sites. We report results from analyses

performed on the superset of sites consisting of all primary and

Author Summary

Human influenza infections have a pronounced seasonal
cycle in temperate regions. Recent laboratory and epide-
miological evidence suggests that low humidity conditions
in the winter may increase virus survival and enable the
virus to transmit efficiently between hosts. However,
seasonal influenza activity in some tropical locations
occurs during the rainy season, whereas other tropical
locations do not experience a well-defined influenza
season. The primary goal of this study was to identify
the relationship between the timing of seasonal influenza
epidemics and climate variability across the globe. We
show the importance of thresholds in humidity, temper-
ature and precipitation that affect the epidemiology, and
potentially the transmission route, of influenza. A better
understanding of the environmental, demographic and
behavioral drivers of influenza seasonality is important for
optimizing intervention strategies, especially in low and
middle-latitude regions.

Figure 1. Map of 78 study sites included in this study. The site symbols indicate whether a location has annual or semi-annual influenza
activity, and symbol size is proportional to the duration of the epidemiological studies used to determine the month of peak activity for each
location.
doi:10.1371/journal.ppat.1003194.g001
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secondary influenza peaks (n = 96), as well as the subset restricted

to primary influenza peaks (n = 76).

In addition to the epidemiological influenza database gleaned

from the literature and encompassing 78 sites, we collected

laboratory-confirmed influenza epidemiological data for 9 coun-

tries from FluNet, the WHO global influenza surveillance effort

[24], to ensure proper model validation with an independent

disease dataset. The group of 9 countries (Spain, Tunisia, Senegal,

Philippines, Vietnam, Colombia, Paraguay, South Africa, and

Argentina) was selected because they were latitudinally diverse,

with a heavy focus on subtropical and tropical regions, each

country was relatively small geographically, and provided several

years of data. We also favored countries that were not represented

in the original 78-location database.

Climate data. For the 78 influenza sites, we compiled

average monthly temperature (uC), relative humidity (%) and

precipitation (mm) data from the CRU/Oxford/IWMI 109

latitude/longitude gridded dataset (CRU CL 2.0) [25]. This

dataset was selected because of its global coverage, high spatial

resolution, and monthly temporal resolution (equal to the temporal

resolution of the epidemiological dataset). We then calculated the

average monthly specific humidity (g/kg)—a measure of absolute

humidity—from relative humidity, temperature and surface

pressure (estimated from elevation) [14].

Because the CRU climate dataset consists of monthly averages

for the arbitrary multiyear period of 1960–1991 and does not

necessarily represent the local monthly conditions in the years

sampled for influenza activity, we also considered a more recent

meteorological dataset from the NCEP/NCAR Global Reanalysis

(GR) project [26]. Unlike the CRU dataset, the GR dataset

provides comprehensive time series data for 1948-present, which

enables calculation of average monthly meteorological conditions

for the appropriate time periods at all sites. The major drawback

of the GR dataset is its coarser spatial scale (2u62u latitude/

longitude), which can obscure local variability in weather and

climate.

To evaluate potential biases associated with a mismatched time

period (CRU dataset) and a coarse spatial resolution (GR dataset),

we performed a comparative analysis of both datasets (Figure S1 in

Text S1). We established that the root-mean-square (RMS) error

introduced by the mismatched temporal period was 3–5 times

smaller than the RMS error introduced by a coarse spatial

resolution. Thus, herein we report the results of analyses based on

temperature, specific humidity, relative humidity and precipitation

data from the more spatially-resolved CRU dataset. We also use

the solar radiation variable from the GR dataset as the CRU

dataset does not have appropriate solar radiation information

(Supplement). Finally, we obtained climate data from the CRU

and GR datasets for the most populous city in each of the 9

countries selected from FluNet for additional model validation.

Statistical Analyses of Influenza and Climate
Exploratory rank analyses. We conducted exploratory

analyses based on a non-parametric rank order approach to assess

the relative association between influenza peaks and seasonal

climate variation. Specifically, we ranked the monthly values of

temperature, solar radiation, specific humidity, and precipitation

for each site in ascending order. We calculated the mean of the

ranks corresponding to the peak influenza month(s) for each site.

Assuming that there is no relative relationship between climatic

factors and timing of influenza peaks, we would expect mean ranks

of 6.5 (‘‘null value’’). We also performed the rank order analysis

across latitude by employing a window spanning 10u of latitude

and sliding it across 5–50uN/S latitude at 2.5u intervals. We

calculated the mean rank for each climate variable corresponding

to influenza peaks for all the sites within each interval. To test for

significance we generated a null distribution (p = 0.05) by boot-

strapping randomly generated distributions for each latitudinal

interval. We evaluated lag relationships of up to 4 months between

climate factors and influenza peaks.

Univariate and multivariate regression. To assess the

absolute relationship between influenza seasonality and climate,

we developed univariate and multivariate logistic regression

models. Because exploratory analyses revealed a bimodal

relationship between influenza peaks and some of the environ-

mental predictors we employed second-degree polynomial func-

tions for climate predictors. We also added interaction terms

describing the deviation of each monthly predictor from its annual

average. The dependent variable was a vector of months

indicating the presence or absence of an influenza peak for each

site and month.

As a sensitivity analysis, we considered mixed effects logistic

models with independent intercepts (exchangeable covariance

structure) to control for the repeated measurements in each site

and different disease periodicities (i.e., annual versus semi-annual

influenza activity). We found this did not have a significant effect

on the modeled relationships and therefore report the results from

classical logistic regression for simplicity.

We used the ‘‘all possible subsets’’ multivariate regression

approach and retained models in which all predictors were

significant (p = 0.05). In conjunction with a jackknife leave-one-out

method we assessed model fit with a ‘‘peak prediction metric’’ that

was defined by calculating the difference between the observed

month of peak influenza activity versus the month with the highest

predicted probability of a peak for each site. The cumulative

proportion of peaks predicted within +/21 month of the observed

peaks were compared to the upper 97.5%, 99% and 99.9%

thresholds of the cumulative proportion of influenza peaks

randomly distributed within +/21 months of the observed peaks

(10,000 runs). In addition to using the peak prediction metric to

quantify model performances across all sites, we compared model

performances between sites in high latitudes (poleward of 25uN/S),

middle latitudes (12.5–25uN/S) and low latitudes (equatorward of

12.5uN/S). We evaluated lag relationships of up to 4 months

between the predictors and influenza peaks.

For additional model validation, we confronted the predictions

of the selected multivariate climate model against the seasonal

distribution of influenza viruses in independent sites selected from

the FluNet database.

Defining influenza geographical and climatic boun-

daries. The rank order and logistic regression analyses indicat-

ed that the relationship between seasonal climate and influenza

peaks was not consistent globally. Low temperatures, solar

radiation and specific humidity corresponded to epidemics in

high latitudes, whereas high levels of precipitation, specific

humidity and relative humidity corresponded to epidemics in

low latitudes. To try to synthesize these results, we explored

whether the seasonal range of climatic factors in a site was

predictive of the environmental conditions during the local

influenza season. Specifically, we constructed a binary dependent

variable by classifying each influenza peak as either ‘cold-dry’ or

‘humid-rainy’ based on whether the influenza peak corresponded

to a month with a specific humidity rank less than or equal to 6 or

greater than or equal to 7, respectively. Specific humidity was

chosen to classify the peaks because the rank-relationship between

influenza peaks in the low latitudes was the opposite of the

relationship observed in high latitudes, and because specific

humidity was significantly correlated with other relevant climate

Environmental Predictors of Influenza
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predictors, including temperature (Pearson rho = 0.87, p,0.0001)

and precipitation (Pearson rho = 0.62, p,0.0001). We then used

the site-specific annual minimum and maximum of each

environmental predictor to generate a conditional probability

function through logistic regression. We defined the value at which

the function equaled 0.50 to be the threshold between cold-dry

and humid-rainy influenza locations. We used a jackknife leave-

one-out method to assess the accuracy of the logistic model in

predicting the climate conditions corresponding to each influenza

peak. Finally, for additional model validation, we confronted the

predicted probability function against observed influenza activity

patterns in the independent study sites selected from FluNet.

Results

Influenza Peaks and Climate: Rank Analysis
Across the 78 sites, influenza peaks generally coincided with

months of lower temperature, lower solar radiation and lower

specific humidity than expected under the null hypothesis (mean

rank = 4.3 [95% CI: 3.7, 5.0] for temperature, 4.5 [95% CI: 3.9,

5.1] for solar radiation and 4.8 [95% CI: 4.0, 5.6] for specific

humidity). In contrast, relative humidity and precipitation did not

significantly deviate from the null value (mean rank not

significantly different than 6.5). The association between influenza

peaks, temperature, solar radiation, relative humidity and specific

humidity was most significant when the influenza peaks lagged 1-

month behind the environmental predictors. We obtained similar

results when the analysis was restricted to primary influenza peaks.

A similar analysis performed with a sliding geographical window

revealed that the association between influenza peaks and climatic

variables varied with latitude (Figure 2). The strongest association

was found at high latitudes poleward of 25uN/S, with influenza

peaks preferentially occurring in months with the lowest temper-

ature, solar radiation and specific humidity. Influenza peaks

occurred in the months with the highest levels of relative humidity

and lowest levels of precipitation poleward of approximately

40uN/S. Primary influenza peaks equatorward of 10uN/S

corresponded to the months with the highest annual levels of

specific humidity and precipitation (p,0.05); whereas there was

no association with temperature, solar radiation and relative

humidity. In middle latitudes ranging between 12.5–25uN/S,

there was no significant association between influenza peaks and

climatic variables.

Univariate and Multivariate Models for Influenza Peaks
Temperature and specific humidity were the best individual

predictors of influenza peaks. The model fits improved slightly

when influenza peaks lagged 1-month behind these predictors, and

accurately predicted 56–66% of the peaks in the global datasets,

with highest accuracy at latitudes poleward of 25uN/S (Tables 1

and 2). The modeled relationship between specific humidity and

all influenza peaks was U-shaped, with lowest probability of an

influenza peak at 12 g/kg of specific humidity and increasing

probabilities at lower and higher values (Figure 3). The analysis

restricted to primary peaks revealed a similar relationship, with a

minimum influenza probability at 11 g/kg. Unlike specific

humidity the modeled relationship between temperature and

influenza peaks was monotonic, with the greatest probability of a

peak corresponding to low temperatures. Although the specific

humidity and temperature models were the best predictors of the

timing of influenza peaks across all sites, they were not significant

predictors of influenza peaks equatorward of 25uN/S.

There was a strong inverse relationship between solar radiation

and the probability of an influenza peak, especially when influenza

peaks were lagged by 1-month. The solar radiation model

outperformed the temperature and specific humidity models

based on AIC, but it was not as strong a predictor of the timing

of the influenza peaks (Tables 1 and 2).

Precipitation was a weak predictor of influenza peaks overall,

but it was a strong predictor of influenza peaks equatorward of

12.5uN/S, particularly for primary influenza peaks (p,0.01)

(Tables 1 and 2). Unlike the other climate variables, precipita-

tion-based models performed slightly better when no lag was

considered between precipitation and influenza activity.

Relative humidity was a strong predictor of influenza peaks

globally, particularly when a 1-month lag was applied to the

influenza peaks. There was a positive association between relative

humidity and influenza peaks in high and low latitudes, but this

model was a poor predictor of influenza peaks in middle latitudes.

Further, the relative humidity model was not as strong as the

specific humidity, solar radiation and temperature models

(Tables 1 and 2).

Overall, the multivariate models most predictive of influenza

peak timing included combinations of temperature and precipi-

tation (all peaks, Table 1), and temperature and specific humidity

(primary peaks, Table 2). These models accurately predicted peak

influenza months in 78% and 89% of the 9 independent sites

selected from the FluNet database, respectively (Figure 4). Further,

the models predicted a nearly uniform probability of influenza

peaks every month of the year in equatorial Colombia, a location

that experiences minimal seasonal climatic fluctuation (Figure 4).

Taken together, this analysis exploring the shape of the

relationship between climatic variables and influenza highlights

the covariability between specific humidity and temperature, and

the significant predictive power of these variables at high latitudes.

In contrast, precipitation and relative humidity were predictive of

influenza peaks at low latitudes. Interaction terms describing

monthly deviations from the annual average of each environmen-

tal predictor marginally improved some models but did not affect

the main conclusions (Tables S1 and S2 in Text S1).

Geographic and Climatic Boundaries Predictive of
Influenza Peaks

To further characterize the distribution of influenza peaks

globally and identify the geographical and climatic boundaries

defining influenza seasonality patterns, we categorized sites based

on whether influenza epidemics occurred in months with low

(cold-dry season) or high (humid-rainy season) levels of specific

humidity relative to the local climatology (Figure 5). We found that

the annual minimum level of specific humidity in a site was

predictive of the seasonal characteristics of influenza activity

locally. Sites characterized by cold-dry influenza peaks generally

experienced annual minimum specific humidity values less than

12 g/kg when all influenza peaks were considered, and approx-

imately 11 g/kg when the analysis was restricted to primary

influenza peaks (Figure 5). The minimum specific humidity models

were statistically significant, and classified 75% of the 96 total

influenza peaks correctly (p,0.001, Figure 5C), and 82% of the 76

primary peaks correctly (p,0.001). Annual minimum temperature

was a slightly better predictor of the type of influenza peak

characterizing a site, correctly classifying 77% and 87% of all

peaks and primary peaks, respectively (p,0.001). Sites character-

ized by cold-dry influenza peaks generally had annual minimum

temperature values less than 21uC when all influenza peaks were

considered, and approximately 18uC when the analysis was

restricted to primary influenza peaks. The temperature and

specific humidity models differentiated between the 6 cold-dry and

Environmental Predictors of Influenza
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Figure 2. Influenza peaks and climate by latitude. The mean monthly rank of each climate variable corresponding to the month of peak
influenza for each 10u latitudinal band. Solar radiation, temperature and specific humidity are lagged by 1 month. The background interval
corresponds to the 95% null distribution. (A) displays the results for both primary and secondary influenza peaks; whereas (B) shows the results for
primary influenza peaks only. Influenza peaks corresponded to months characterized by low ranks of temperature, solar radiation, and specific
humidity in high latitudes. Primary influenza peaks corresponded to months with high ranks of humidity (both relative and specific) and precipitation
in low latitudes.
doi:10.1371/journal.ppat.1003194.g002

Environmental Predictors of Influenza

PLOS Pathogens | www.plospathogens.org 5 March 2013 | Volume 9 | Issue 3 | e1003194



3 humid-rainy influenza peaks available in the independent FluNet

sites with 100% and 78% accuracy, respectively.

Annual minimum solar radiation was a significant predictor of

the type of influenza peaks, comparable to temperature and

specific humidity, correctly classifying 71% and 79%of all peaks

and primary peaks, respectively (p,0.001). Annual minimum

relative humidity and annual monthly maximum precipitation

were also significant predictors, but the models were significantly

weaker than the other models. It should be noted that 12 sites had

both a cold-dry and humid-rainy influenza peak, assuring that one

peak would be classified incorrectly when all influenza peaks were

considered.

Taken together, this analysis indicates that thresholds in specific

humidity and temperature, and perhaps solar radiation, are

associated with the timing of the influenza season and the

occurrence of influenza activity in the dry-cold or humid-rainy

months of the year. The specific humidity and temperature models

were then used to predict the expected seasonal characteristics of

influenza globally (Figure 5C–D). Both models suggest that

seasonal influenza activity coincides with the humid-rainy season

Table 1. Environmental models for all influenza peaks, by latitudinal interval.

Proportion of peaks accurately predicted by each model

Climatologies Coefficients (SE) AIC All Peaks n = 96

aHigh Latit.
n = 50

bMiddle Latit.
n = 31

cLow Latit.
n = 15

Temperature (Precipitation)2 20.05 (4.66e-6)
1.10e-5 (7.78e-5)

590 0.61*** 0.82*** 0.39 0.40

Temperature 20.03 (0.01) 611 0.59*** 0.84*** 0.39 0.20

Specific Humidity (Specific
Humidity)2

20.54 (20.09)
0.02 (3.82e-3)

593 0.56*** 0.78*** 0.32 0.33

(Solar Radiation)2 22.06e-5 (4.18e-6) 578 0.52*** 0.70*** 0.39 0.20

Relative Humidity 0.03 (0.01) 613 0.41* 0.52*** 0.19 0.47

(Precipitation)2 7.28e-06 (1.95e-6) 615 0.31 0.22 0.39 0.47

Expected Values i.e. null
distribution (95% CI)

0.25 (0.16 0.34) 0.25 (0.14 0.38) 0.24 (0.09 0.42) 0.25 (0.00 0.53)

*p,0.05,
** p,0.01,
***p,0.001.
ahigh latitudes are regions poleward of 25uN/S.
bmiddle latitudes are regions between 12.5uN/S and 25uN/S.
clow latitudes are regions equatorward of 12.5uN/S.
The results of selected logistic regression models, based on Aikake Information Criterion (AIC) and the proportion of peaks accurately predicted by each model using a
jackknife leave-one-out method. These values can be compared against the expected values and corresponding confidence intervals under the null distribution in the
bottom row. The models are in descending order based on the proportion of peaks accurately predicted. Influenza peaks were lagged by 1-month with respect to each
environmental variable with the exception of precipitation.
doi:10.1371/journal.ppat.1003194.t001

Table 2. Environmental models for primary influenza peaks.

Proportion of peaks accurately predicted by each model

Climatologies Coefficients AIC All Peaks n = 76

aHigh Latit.
n = 47

bMiddle Latit.
n = 20 cLow Latit. n = 9

Temperature Specific
Humidity

20.10 (2.56e-3)
0.10 (1.76e-3)

501 0.70*** 0.87*** 0.30 0.67**

Temperature 20.05 (0.01) 504 0.66*** 0.85*** 0.35 0.33

Specific Humidity (Specific
Humidity)2

20.55 (0.09)
0.02 (4.18e-3)

493 0.62*** 0.81*** 0.35 0.22

(Solar Radiation)2 23.50e-5 (5.14e-6) 471 0.59*** 0.72*** 0.40 0.33

Relative Humidity 0.02 (0.01) 521 0.43*** 0.53*** 0.10 0.67**

(Precipitation)2 5.24e-06 (2.57e-6) 524 0.32 0.21 0.40 0.67**

Expected Values i.e. null
distribution (95% CI)

0.24 (0.13 0.38) 0.24 (0.16 0.36) 0.20 (0.05 0.45) 0.20 (0.00 0.55)

* p,0.05,
**p,0.01,
***p,0.001.
ahigh latitudes are regions poleward of 25uN/S.
bmiddle latitudes are regions between 12.5uN/S and 25uN/S.
clow latitudes are regions equatorward of 12.5uN/S.
Same as Table 1 but these are the results for primary influenza peaks only.
doi:10.1371/journal.ppat.1003194.t002
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in large areas of Central and South America, and Southern Asia;

while predictions were more uncertain in middle latitudes and

there were inconsistencies between the two models for parts of

Central Africa. In particular, the model driven by minimum

temperature predicted the occurrence of humid-rainy influenza

peaks in most of Central Africa, while the model driven by

minimum specific humidity predicted a more restricted zone of

humid-rainy peaks concentrated on the Western coast of this

region. These discrepancies can be explained by a combination of

warm year-round temperatures in this area, with low specific

humidity values in parts of the year.

Discussion

We explored the association between influenza seasonality and

climate in a representative sample of 78 global sites, spanning an

Figure 3. Influenza peaks, specific humidity and precipitation. (A) Estimated U-shaped relationship between the likelihood of an influenza
peak and average monthly specific humidity across all sites, based on logistic regression (Table 1). The left side of the curve is strongly correlated with
the relationship between specific humidity and influenza survival and transmission observed in laboratory studies [17,32,33]. However, the
mechanism that causes the pattern on the right side of the curve is not readily explained. (B) The relationship between average monthly specific
humidity and precipitation across all sites. Influenza peaks clustered in months associated with low specific humidity and high precipitation
conditions. This suggests that precipitation may explain the occurrence of humid-rainy influenza peaks and may be responsible for the right hand
side of the U-shaped curve between specific humidity and influenza (A).
doi:10.1371/journal.ppat.1003194.g003
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absolute latitudinal range between 1u and 60u. Our analyses

revealed two distinct types of climatic conditions associated with

influenza seasons observed globally: ‘‘cold-dry’’ and ‘‘humid-

rainy’’. In general, sites that experienced low levels of specific

humidity and temperature (less than 11–12 g/kg and 18–21uC) for

at least one month during the year were characterized by seasonal

influenza activity during the months with minimal levels of specific

humidity and temperature. In contrast, sites that maintained high

levels of specific humidity and temperature were generally

characterized by influenza epidemics during the most humid

and rainy months of the year. The predictions of our climate-

based models compared favorably to influenza epidemiological

information collected independently of the dataset used for the

model-building exercise.

The bimodal nature of the relationship, in both relative and

absolute terms, between specific humidity and influenza peaks,

and its strong relationship to other climate variables such as

temperature and precipitation, makes specific humidity a useful

gauge of the environmental favorability of influenza activity across

all latitudes (Figure 5). However, although the specific humidity

models were significant predictors of influenza peaks globally, this

was primarily due to their performance in high latitudes. In low

latitudes, precipitation was a stronger predictor of the timing of

influenza activity, with peaks typically occurring in months with

average precipitation greater than 150 mm (Figure 3).

Overall, although precipitation was strongly associated with

influenza peaks in low latitudes, the timing of influenza peaks in

this region was more difficult to predict than in high-latitude sites.

Several sites in this region were not characterized by well-defined

influenza season; rather, influenza activity was present year-round

likely due to the limited seasonal environmental variation that

characterizes much of the region. For example, equatorial sites

such as Iquitos, Peru, and Singapore—where influenza seasonality

is weak [27,28]— experience limited fluctuations in precipitation,

with monthly averages constrained to a narrow range of 150–

300 mm year-round. In contrast, middle and low-latitude sites

such as Fortaleza, Brazil and Yangon, Myanmar —which are

noted for their well-defined influenza seasons [9,11]—are charac-

terized by large amplitude range in average monthly precipitation

from 25 mm in the dry season to over 300 mm and 600 mm in the

rainy season, respectively.

Model performances were particularly poor in a number of

middle latitudes sites. Predicting influenza peaks in these sites may

be complicated by large seasonal swings in climate that

characterize the region, generating both cold-dry and humid-

rainy seasons that are equally favorable for seasonal influenza

activity, such as in Senegal (Figure 4). For these sites other factors

might play a critical role in determining the timing of influenza

activity, including population mixing (i.e., travel) with regions that

do experience well-defined influenza seasons [29,30], or the

seasonal phasing with school cycles [21]. Moreover, the presence

of both cold-dry and humid-rainy seasons could explain the

occurrence of semi-annual influenza epidemics in some of these

middle-latitude sites. For example, Hong Kong has a primary

influenza peak in winter when average monthly specific humidity

and temperature are less than 8 g/kg and 17uC, and a secondary

influenza peak in summer when average monthly precipitation is

near 400 mm.

Temperature was a strong predictor of influenza seasonality in

high latitudes, suggesting that cold temperatures may drive

seasonal epidemics in these regions. However, previous analyses

of laboratory experiments have indicated that specific humidity is

a more parsimonious predictor of virus survival and transmission

than temperature [17]. Furthermore, individuals in temperate

regions spend a vast majority of their time indoors where

temperature is managed and does not correlate well with outdoor

temperatures. Yet, temperature may affect the timing of influenza

epidemics through mechanisms independent of virus survival; for

example, low outdoor temperatures may promote indoor crowd-

ing, thereby increasing person-to-person contact rates [2–4]. It is

also possible that even limited exposure to cold outdoor

temperatures can have long-lasting physiological effects on hosts

that make them more susceptible to infection or affect viral

shedding [16]. Additional experimental and observational work is

needed to disentangle the contribution of specific humidity and

temperature on influenza seasonality; epidemiological information

from Central Africa would be particularly useful in this respect as

our climate-based predictive models disagreed in this region.

The findings that both cold-dry and humid-rainy conditions are

associated with influenza peaks could be used to support the

hypothesis that two distinct mechanisms account for influenza

seasonality in temperate and tropical climates, perhaps due to

changes in the dominant mode of transmission [31]. For example,

specific humidity may drive the timing of influenza epidemics in

high latitudes by increasing virus survival and enabling aerosol

transmission; whereas direct transmission or transmission by

fomites may dominate in low-latitude sites where rainy conditions

favor indoor crowding. Middle latitudes may be a transition zone

where influenza seasons are driven by low specific humidity or

high levels of precipitation depending on local climate. Another

intriguing possibility is that the relationship between specific

humidity and virus survival underlies influenza transmission across

all latitudes. For example, a few experimental studies have

indicated a U-shaped relationship between relative humidity and

influenza virus survival, suggesting a similar relationship for

specific humidity given that experiments were held at constant

temperature [32–34]. Other laboratory studies, however, have

indicated that virus survival and transmission increase monoton-

ically as specific humidity decreases [17,35,36]. Further, the

hypothesis that specific humidity drives influenza transmission

globally is inconsistent with the low predictive power of this

climatic variable in middle and low-latitude sites in our study.

Relative humidity was a strong predictor of influenza peaks in

high and low latitudes, but a poor predictor in middle-latitude. In

high-latitude regions, relative humidity can vary significantly

between indoor and outdoor environments, and it is typically

minimal indoors during the winter when building air is heated.

Our analysis relied on outdoor humidity and hence we cannot rule

out that winter influenza epidemics in high latitudes could be

related to low indoor relative humidity and associated changes to

Figure 4. Influenza seasonal distribution for 9 sites selected from an independent epidemiological dataset and climate model
outputs. (A,C,E,G,I,K,M,O,Q) Box plots indicate the proportion of influenza cases occurring in each month of the year for 9 countries with multiyear
data selected from FluNet. Results of the best-fit climate models for all and primary peaks (Tables 1 and 2) are displayed for comparison. Specific
humidity and temperature were advanced one month to account for the one month lag between influenza peaks and these variables. Although the
models were designed to estimate the timing of peak influenza activity, they also provide estimates of the seasonal distribution of influenza virus
circulation. (B,D,F,H,J,L,N,P,R) The right column displays the monthly precipitation, temperature and specific humidity for each location. Dotted lines
indicate the climatic thresholds for each variable. In general, when temperature or specific humidity drops below their respective thresholds, or
precipitation surpasses its threshold, there is an increase in influenza activity.
doi:10.1371/journal.ppat.1003194.g004
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Figure 5. Climatic thresholds predictive of influenza seasonal characteristics. (A) density plot showing the specific humidity in absolute
terms (x-axis) and relative terms (y-axis) during influenza peaks across all sites. The plot shows that a vast majority of influenza peaks occurred in
‘‘cold-dry’’ conditions when specific humidity was lower than 8 g/kg and ranks were less than 4, or during ‘‘humid-rainy’’ conditions when specific
humidity was greater than 14 g/kg and ranks were greater than 9. (B) a line plot showing the average annual range of specific humidity (y-axis) for
each location (x-axis). Sites are ordered based on minimum specific humidity. The black dots indicate the specific humidity during the month of the
primary peak and circles indicate specific humidity during secondary peaks. Together, the plots suggest that sites with the lowest annual minimum
specific humidity have influenza peaks when specific humidity is at locally-minimal levels. (C) a map displaying the predictions of a logistic regression
indicating the probability of an influenza peak during the cold-dry season, versus the humid-rainy season, based on annual minimum specific
humidity. The markers indicate the 78 study sites with influenza peaks classified as cold-dry (circles) and humid-rainy (squares). (D) same as (C) but the
model is based on annual minimum temperature.
doi:10.1371/journal.ppat.1003194.g005
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host physiology, such as reduced mucociliary clearance [20]. In

low latitudes it is possible that relative humidity is confounding

precipitation in our analysis. Disentangling these two factors will

require more highly-resolved epidemiological data from equatorial

regions, and further experimental and observational studies.

Solar radiation was also a significant predictor of influenza

peaks in high latitudes suggesting that it may also underlie

influenza seasonality in these regions, perhaps through variation in

vitamin D intake [18]. However, solar radiation was not as strong

a predictor of influenza peaks as were specific humidity and

temperature. This corroborates recent studies indicating that

specific humidity is a stronger predictor of seasonal influenza

activity than solar radiation and vitamin D variability in the U.S.

[14,37]. Still, the potential seasonal forcing of solar radiation on

influenza transmission warrants further experimental and obser-

vational investigation.

The power of this study was rooted in the large number of

spatially diverse sites used to develop the epidemiological and

climatic databases and associated models. However, the challenge

of describing seasonal influenza activity consistently across a

variety of data sources required a crude epidemiological measure,

such as the average month of peak influenza activity. This measure

of influenza activity has several key drawbacks. Foremost, all

months with the exception of the peak influenza months were

considered equal, whether they had substantial influenza activity

or not. Second, the month of peak influenza activity may not be

contemporaneous with the month in which transmission is under

the most environmentally favorable conditions, since non-

environmental factors such as viral seeding, population suscepti-

bility, and person-to-person contact rates likely play a role in the

timing of influenza epidemics [15,21]. In this respect, it is

reassuring that a 1-month lag maximized the association between

influenza peak and most of the climatic variables, which is broadly

consistent with the time scale of the ascending phase of a local

epidemic. Third, we could not assess putative geographical

variation in the transmission potential or intensity of influenza

epidemics. For example, we may expect locations that have the

most favorable environmental conditions to experience the

greatest influenza annual attack rates and reproduction numbers,

holding all other relevant variables equal. A further limitation

relates to between-year variability in influenza timing and the

limited temporal sampling of our dataset, which may have resulted

in imprecise estimates of the average influenza peak in some sites,

especially sites that had only one year of influenza data. However,

sensitivity analyses limited to multi-year studies revealed similar

relationships between climate predictors and influenza peaks,

confirming the robustness of our results. Finally, we were unable to

check whether between-year fluctuations in climatic variables may

result in departures from average influenza seasonal characteristics

in specific years. This question could be an interesting area for

future research with more temporally refined epidemiological

datasets.

A number of follow-up studies could help refine our

understanding of the small and large-scale processes underlying

influenza seasonality. For example, experimental infections in

humans under controlled temperature and humidity conditions

could determine which environmentally-mediated mechanisms are

most important for human-to-human transmission. However,

there are several ethical and methodological hurdles to overcome

in such studies [38]. Seasonal fluctuation in contact rates could be

monitored by wireless sensor technology, which has recently

proved successful in estimating dynamic contact patterns in

schools and at conferences [39–40]. On a broader spatial scale,

determining regional differences in influenza transmission dynam-

ics and attack rates would be most informative. A recent study has

suggested that the reproduction number of seasonal epidemics was

lower on average in Brazil than in temperate countries, which

could be mediated by environmental factors [41]. Modeling of

long-term influenza time series data could help assess the

transmission impact of seasonal fluctuations in population mixing

in different regions, such as those associated with school cycles [21]

and transportation networks [29,30,42]. For example, epidemio-

logical evidence indicates that influenza circulation was weakly

seasonal in Iceland prior to the 1930s, presumably because of low

connectivity with other populations, and epidemics only became

fully synchronized with those in Europe and the USA following a

dramatic increase in international travel in the 1990s [43]. Hence,

efforts to collate multiyear influenza epidemiological information

retrospectively and prospectively in various regions of the globe,

especially from middle and low latitude regions, will be of

tremendous help to further elucidate the environmental and

population drivers of seasonality.

In conclusion, our study broadens our understanding of the

relationships between seasonal influenza epidemics and environ-

mental factors and provides a synthesis of epidemiological and

climatic characteristics across temperate, subtropical and tropical

regions. We have highlighted the importance of thresholds in

specific humidity, temperature and precipitation that are associ-

ated with the epidemiology (and potentially the modes of

transmission) of influenza. The results of this study could help

improve existing influenza transmission models by providing a

more accurate estimate of the environmental forcing on transmis-

sion processes, particularly in low and middle latitudes [14,44].

Further, our models could be used to predict the seasonal timing of

influenza activity in locations with little or no observational data

on influenza activity, and help target surveillance efforts and

optimize the timing of seasonal vaccine delivery, [45]. More

broadly, we hope that our work will generate interest in testing the

association between climatic patterns and infectious disease across

a wide range of diseases and latitudes, particularly for respiratory

and enteric pathogens that display marked seasonality [2,46]. A

better understanding of the environmental, demographic and

social drivers of infectious disease seasonality is key for improving

transmission models and optimizing interventions [47].
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27. Laguna-Torres AV, Gómez J, Ocaña V, Aguilar P, Saldarriaga T, et al. (2009)

Influenza-like illness sentinel surveillance in Peru. PLoS ONE 4:e6118.

28. Chow A, Ma S, Ling AE, Chew SK (2006) Influenza-associated deaths in
tropical Singapore. Emerg Infect Dis 12:114–121.

29. Colizza V, Barrat A, Barthelemy M, Valleron A. (2007). Modeling the
Worldwide Spread of Pandemic Influenza: Baseline Case and Containment

Interventions. PLoS Medicine 4(1):e13. doi:10.1371/journal.pmed.0040013

30. Kenah E, Chao DL, Matrajt L, Halloran ME, Longini IM Jr (2011) The Global
Transmission and Control of Influenza. PLoS ONE 6(5): e19515. doi:10.1371/

journal.pone.0019515
31. Lowen AC, Steel J, Mubareka S, Palese P (2008) High temperature (30uC)

blocks aerosol but not contact transmission of influenza virus. J Virol 78: 5650–
5652.

32. Shechmeister I (1950) Studies on the experimental epidemiology of respiratory

infections: III. certain aspects of the behavior of type A influenza virus as an air-
borne cloud. J Infect Dis 87: 128–132.

33. Schaffer F, Soergel M, Straube D (1976) Survival of airborne influenza virus:
effects of propagating host, relative humidity, and composition of spray fluids.

Arch Virol 51: 263–278.

34. Yang W, Elankumaran S, Marr LC (2012) Relationship between humidity and
influenza A viability in droplets and implications for influenza’s seasonality.

PLoS ONE 7(10): e46789.
35. McDevitt J, Rudnick S, First M, Spengler J (2010) Role of absolute humidity in

the inactivation of influenza viruses on stainless steel surfaces at elevated
temperatures. Appl Environ Microb 76: 3943–3947.

36. Harper G (1961) Airborne micro-organisms: survival tests with four viruses.

J Hyg - Cambridge 59:479–486.
37. Shaman J, Jeon CY, Giovannucci E, Lipsitch M (2011) Shortcomings of vitamin

D-based model simulations of seasonal influenza. PLoS ONE 6:e20743.
38. Killingley B, Enstone J, Booy R, Hayward A (2011) Potential role of human

challenge studies for investigation of influenza transmission. Lancet Infect Dis

11: 70142–6
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