98 research outputs found

    Phylogeny and evolution of medical species of candida and related taxa: a multigenic analysis

    Get PDF
    Hemiascomycetes are species of yeasts within the order Saccharomycetales. The order encompasses disparate genera with a variety of life styles, including opportunistic human pathogens (e.g., Candida albicans), plant pathogens (e.g., Eremothecium gossypii), and cosmopolitan yeasts associated with water and decaying vegetation. To analyze the phylogeny of medically important species of yeasts, we selected 38 human pathogenic and related strains in the order Saccharomycetales. The DNA sequences of six nuclear genes were analyzed by maximum likelihood and Bayesian phylogenetic methods. The maximum likelihood analysis of the combined data for all six genes resolved three major lineages with significant support according to Bayesian posterior probability. One clade was mostly comprised of pathogenic species of Candida. Another major group contained members of the family Metschnikowiaceae as a monophyletic group, three species of Debaryomyces, and strains of Candida guilliermondii. The third clade consisted exclusively of species of the family Saccharomycetaceae. Analysis of the evolution of key characters indicated that both codon reassignment and coenzyme Q9 likely had single origins with multiple losses. Tests of correlated character evolution revealed that these two traits evolved independently

    Supervision and Scholarly Writing: Writing to Learn - Learning to Write

    Get PDF
    This paper describes an action research project on postgraduate students’ scholarly writing in which I employed reflective approaches to examine and enhance my postgraduate supervisory practice. My reflections on three distinct cycles of supervision illustrate a shift in thinking about scholarly writing and an evolving understanding of how to support postgraduate students’ writing. These understandings provide the foundation for a future-oriented fourth cycle of supervisory practice, which is characterised by three principles, namely the empowerment of students as writers, the technological context of contemporary writing, and ethical issues in writing

    CandidaDB: a multi-genome database for Candida species and related Saccharomycotina

    Get PDF
    CandidaDB (http://genodb.pasteur.fr/CandidaDB) was established in 2002 to provide the first genomic database for the human fungal pathogen Candida albicans. The availability of an increasing number of fully or partially completed genome sequences of related fungal species has opened the path for comparative genomics and prompted us to migrate CandidaDB into a multi-genome database. The new version of CandidaDB houses the latest versions of the genomes of C. albicans strains SC5314 and WO-1 along with six genome sequences from species closely related to C. albicans that all belong to the CTG clade of Saccharomycotina—Candida tropicalis, Candida (Clavispora) lusitaniae, Candida (Pichia) guillermondii, Lodderomyces elongisporus, Debaryomyces hansenii, Pichia stipitis—and the reference Saccharomyces cerevisiae genome. CandidaDB includes sequences coding for 54 170 proteins with annotations collected from other databases, enriched with illustrations of structural features and functional domains and data of comparative analyses. In order to take advantage of the integration of multiple genomes in a unique database, new tools using pre-calculated or user-defined comparisons have been implemented that allow rapid access to comparative analysis at the genomic scale

    Hsp90 orchestrates transcriptional regulation by Hsf1 and cell wall remodelling by MAPK signalling during thermal adaptation in a pathogenic yeast

    Get PDF
    Acknowledgments We thank Rebecca Shapiro for creating CaLC1819, CaLC1855 and CaLC1875, Gillian Milne for help with EM, Aaron Mitchell for generously providing the transposon insertion mutant library, Jesus Pla for generously providing the hog1 hst7 mutant, and Cathy Collins for technical assistance.Peer reviewedPublisher PD

    Saccharomyces cerevisiae: Population Divergence and Resistance to Oxidative Stress in Clinical, Domesticated and Wild Isolates

    Get PDF
    BACKGROUND: Saccharomyces cerevisiae has been associated with human life for millennia in the brewery and bakery. Recently it has been recognized as an emerging opportunistic pathogen. To study the evolutionary history of S. cerevisiae, the origin of clinical isolates and the importance of a virulence-associated trait, population genetics and phenotypic assays have been applied to an ecologically diverse set of 103 strains isolated from clinics, breweries, vineyards, fruits, soil, commercial supplements and insect guts. METHODOLOGY/PRINCIPAL FINDINGS: DNA sequence data from five nuclear DNA loci were analyzed for population structure and haplotype distribution. Additionally, all strains were tested for survival of oxidative stress, a trait associated with microbial pathogenicity. DNA sequence analyses identified three genetic subgroups within the recombining S. cerevisiae strains that are associated with ecology, geography and virulence. Shared alleles suggest that the clinical isolates contain genetic contribution from the fruit isolates. Clinical and fruit isolates exhibit high levels of recombination, unlike the genetically homogenous soil isolates in which no recombination was detected. However, clinical and soil isolates were more resistant to oxidative stress than any other population, suggesting a correlation between survival in oxidative stress and yeast pathogenicity. CONCLUSIONS/SIGNIFICANCE: Population genetic analyses of S. cerevisiae delineated three distinct groups, comprising primarily the (i) human-associated brewery and vineyard strains, (ii) clinical and fruit isolates (iii) and wild soil isolates from eastern U.S. The interactions between S. cerevisiae and humans potentiate yeast evolution and the development of genetically, ecologically and geographically divergent groups

    Incipient Balancing Selection through Adaptive Loss of Aquaporins in Natural Saccharomyces cerevisiae Populations

    Get PDF
    A major goal in evolutionary biology is to understand how adaptive evolution has influenced natural variation, but identifying loci subject to positive selection has been a challenge. Here we present the adaptive loss of a pair of paralogous genes in specific Saccharomyces cerevisiae subpopulations. We mapped natural variation in freeze-thaw tolerance to two water transporters, AQY1 and AQY2, previously implicated in freeze-thaw survival. However, whereas freeze-thaw–tolerant strains harbor functional aquaporin genes, the set of sensitive strains lost aquaporin function at least 6 independent times. Several genomic signatures at AQY1 and/or AQY2 reveal low variation surrounding these loci within strains of the same haplotype, but high variation between strain groups. This is consistent with recent adaptive loss of aquaporins in subgroups of strains, leading to incipient balancing selection. We show that, although aquaporins are critical for surviving freeze-thaw stress, loss of both genes provides a major fitness advantage on high-sugar substrates common to many strains' natural niche. Strikingly, strains with non-functional alleles have also lost the ancestral requirement for aquaporins during spore formation. Thus, the antagonistic effect of aquaporin function—providing an advantage in freeze-thaw tolerance but a fitness defect for growth in high-sugar environments—contributes to the maintenance of both functional and nonfunctional alleles in S. cerevisiae. This work also shows that gene loss through multiple missense and nonsense mutations, hallmarks of pseudogenization presumed to emerge after loss of constraint, can arise through positive selection

    Phenotypic Landscape of Saccharomyces cerevisiae during Wine Fermentation: Evidence for Origin-Dependent Metabolic Traits

    Get PDF
    The species Saccharomyces cerevisiae includes natural strains, clinical isolates, and a large number of strains used in human activities. The aim of this work was to investigate how the adaptation to a broad range of ecological niches may have selectively shaped the yeast metabolic network to generate specific phenotypes. Using 72 S. cerevisiae strains collected from various sources, we provide, for the first time, a population-scale picture of the fermentative metabolic traits found in the S. cerevisiae species under wine making conditions. Considerable phenotypic variation was found suggesting that this yeast employs diverse metabolic strategies to face environmental constraints. Several groups of strains can be distinguished from the entire population on the basis of specific traits. Strains accustomed to growing in the presence of high sugar concentrations, such as wine yeasts and strains obtained from fruits, were able to achieve fermentation, whereas natural yeasts isolated from “poor-sugar” environments, such as oak trees or plants, were not. Commercial wine yeasts clearly appeared as a subset of vineyard isolates, and were mainly differentiated by their fermentative performances as well as their low acetate production. Overall, the emergence of the origin-dependent properties of the strains provides evidence for a phenotypic evolution driven by environmental constraints and/or human selection within S. cerevisiae

    Mapping the Hsp90 Genetic Interaction Network in Candida albicans Reveals Environmental Contingency and Rewired Circuitry

    Get PDF
    The molecular chaperone Hsp90 regulates the folding of diverse signal transducers in all eukaryotes, profoundly affecting cellular circuitry. In fungi, Hsp90 influences development, drug resistance, and evolution. Hsp90 interacts with ∼10% of the proteome in the model yeast Saccharomyces cerevisiae, while only two interactions have been identified in Candida albicans, the leading fungal pathogen of humans. Utilizing a chemical genomic approach, we mapped the C. albicans Hsp90 interaction network under diverse stress conditions. The chaperone network is environmentally contingent, and most of the 226 genetic interactors are important for growth only under specific conditions, suggesting that they operate downstream of Hsp90, as with the MAPK Hog1. Few interactors are important for growth in many environments, and these are poised to operate upstream of Hsp90, as with the protein kinase CK2 and the transcription factor Ahr1. We establish environmental contingency in the first chaperone network of a fungal pathogen, novel effectors upstream and downstream of Hsp90, and network rewiring over evolutionary time
    corecore