695 research outputs found

    Associations of NINJ2 sequence variants with incident ischemic stroke in the Cohorts for Heart and Aging in Genomic Epidemiology (CHARGE) consortium

    Get PDF
    Background<p></p> Stroke, the leading neurologic cause of death and disability, has a substantial genetic component. We previously conducted a genome-wide association study (GWAS) in four prospective studies from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium and demonstrated that sequence variants near the NINJ2 gene are associated with incident ischemic stroke. Here, we sought to fine-map functional variants in the region and evaluate the contribution of rare variants to ischemic stroke risk.<p></p> Methods and Results<p></p> We sequenced 196 kb around NINJ2 on chromosome 12p13 among 3,986 European ancestry participants, including 475 ischemic stroke cases, from the Atherosclerosis Risk in Communities Study, Cardiovascular Health Study, and Framingham Heart Study. Meta-analyses of single-variant tests for 425 common variants (minor allele frequency [MAF] ≄ 1%) confirmed the original GWAS results and identified an independent intronic variant, rs34166160 (MAF = 0.012), most significantly associated with incident ischemic stroke (HR = 1.80, p = 0.0003). Aggregating 278 putatively-functional variants with MAF≀ 1% using count statistics, we observed a nominally statistically significant association, with the burden of rare NINJ2 variants contributing to decreased ischemic stroke incidence (HR = 0.81; p = 0.026).<p></p> Conclusion<p></p> Common and rare variants in the NINJ2 region were nominally associated with incident ischemic stroke among a subset of CHARGE participants. Allelic heterogeneity at this locus, caused by multiple rare, low frequency, and common variants with disparate effects on risk, may explain the difficulties in replicating the original GWAS results. Additional studies that take into account the complex allelic architecture at this locus are needed to confirm these findings

    Early Life Socioeconomic Circumstance and Late Life Brain Hyperintensities : A Population Based Cohort Study

    Get PDF
    Funding: Image acquisition and image analysis for this study was funded by the Alzheimer's Research Trust (now Alzheimer's Research UK). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Acknowledgments The authors would like to thank the participants of the Aberdeen 1936 Birth Cohort (ABC36), without whom this research would not have been possible.Peer reviewedPublisher PD

    Genome-Wide Meta-analysis identifies three novel loci associated with stroke

    Get PDF
    We conducted a European‐only and transancestral genome‐wide association meta‐analysis in 72,147 stroke patients and 823,869 controls using data from UK Biobank (UKB) and the MEGASTROKE consortium. We identified an exonic polymorphism in NOS3 (rs1799983, p.Glu298Asp; p = 2.2E‐8, odds ratio [OR] = 1.05, 95% confidence interval [CI] = 1.04–1.07) and variants in an intron of COL4A1 (rs9521634; p = 3.8E‐8, OR = 1.04, 95% CI = 1.03–1.06) and near DYRK1A (rs720470; p = 6.1E‐9, OR = 1.05, 95% CI = 1.03–1.07) at genome‐wide significance for stroke. Effect sizes of known stroke loci were highly correlated between UKB and MEGASTROKE. Using Mendelian randomization, we further show that genetic variation in the nitric oxide synthase–nitric oxide pathway in part affects stroke risk via variation in blood pressure

    Genetic determinants of cortical structure (thickness, surface area and volumes) among disease free adults in the CHARGE Consortium

    Get PDF
    Cortical thickness, surface area and volumes (MRI cortical measures) vary with age and cognitive function, and in neurological and psychiatric diseases. We examined heritability, genetic correlations and genome-wide associations of cortical measures across the whole cortex, and in 34 anatomically predefined regions. Our discovery sample comprised 22,824 individuals from 20 cohorts within the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium and the United Kingdom Biobank. Significant associations were replicated in the Enhancing Neuroimaging Genetics through Meta-analysis (ENIGMA) consortium, and their biological implications explored using bioinformatic annotation and pathway analyses. We identified genetic heterogeneity between cortical measures and brain regions, and 160 genome-wide significant associations pointing to wnt/ÎČ-catenin, TGF-ÎČ and sonic hedgehog pathways. There was enrichment for genes involved in anthropometric traits, hindbrain development, vascular and neurodegenerative disease and psychiatric conditions. These data are a rich resource for studies of the biological mechanisms behind cortical development and aging

    How Much Do Focal Infarcts Distort White Matter Lesions and Global Cerebral Atrophy Measures?

    Get PDF
    BACKGROUND: White matter lesions (WML) and brain atrophy are important biomarkers in stroke and dementia. Stroke lesions, either acute or old, symptomatic or silent, are common in older people. Such stroke lesions can have similar signals to WML and cerebrospinal fluid (CSF) on magnetic resonance (MR) images, and may be classified accidentally as WML or CSF by MR image processing algorithms, distorting WML and brain atrophy volume from the true volume. We evaluated the effect that acute or old stroke lesions at baseline, and new stroke lesions occurring during follow-up, could have on measurement of WML volume, cerebral atrophy and their longitudinal progression. METHODS: We used MR imaging data from patients who had originally presented with acute lacunar or minor cortical ischaemic stroke symptoms, recruited prospectively, who were scanned at baseline and about 3 years later. We measured WML and CSF volumes (ml) semi-automatically. We manually outlined the acute index stroke lesion (ISL), any old stroke lesions present at baseline, and new lesions appearing de novo during follow-up. We compared baseline and follow-up WML volume, cerebral atrophy and their longitudinal progression excluding and including the acute ISL, old and de novo stroke lesions. A non-parametric test (Wilcoxon's signed rank test) was used to compare the effects. RESULTS: Among 46 patients (mean age 72 years), 33 had an ISL visible on MR imaging (median volume 2.05 ml, IQR 0.88–8.88) and 7 of the 33 had old lacunes at baseline: WML volume was 8.54 ml (IQR 5.86–15.80) excluding versus 10.98 ml (IQR 6.91–24.86) including ISL (p < 0.001). At follow-up, median 39 months later (IQR 30–45), 3 patients had a de novo stroke lesion; total stroke lesion volume had decreased in 11 and increased in 22 patients: WML volume was 12.17 ml (IQR 8.54–19.86) excluding versus 14.79 ml (IQR 10.02–38.03) including total stroke lesions (p < 0.001). Including/excluding lacunes at baseline or follow-up also made small differences. Twenty-two of the 33 patients had tissue loss due to stroke lesions between baseline and follow-up, resulting in a net median brain tissue volume loss (i.e. atrophy) during follow-up of 24.49 ml (IQR 12.87–54.01) excluding versus 24.61 ml (IQR 15.54–54.04) including tissue loss due to stroke lesions (p < 0.001). Including stroke lesions in the WML volume added substantial noise, reduced statistical power, and thus increased sample size estimated for a clinical trial. CONCLUSIONS: Failure to exclude even small stroke lesions distorts WML volume, cerebral atrophy and their longitudinal progression measurements. This has important implications for design and sample size calculations for observational studies and randomised trials using WML volume, WML progression or brain atrophy as outcome measures. Improved methods of discriminating between stroke lesions and WML, and between tissue loss due to stroke lesions and true brain atrophy are required

    Common variation in PHACTR1 is associated with susceptibility to cervical artery dissection

    Get PDF
    Cervical artery dissection (CeAD), a mural hematoma in a carotid or vertebral artery, is a major cause of ischemic stroke in young adults although relatively uncommon in the general population (incidence of 2.6/100,000 per year). Minor cervical traumas, infection, migraine and hypertension are putative risk factors, and inverse associations with obesity and hypercholesterolemia are described. No confirmed genetic susceptibility factors have been identified using candidate gene approaches. We performed genome-wide association studies (GWAS) in 1,393 CeAD cases and 14,416 controls. The rs9349379[G] allele (PHACTR1) was associated with lower CeAD risk (odds ratio (OR) = 0.75, 95% confidence interval (CI) = 0.69-0.82; P = 4.46 × 10(-10)), with confirmation in independent follow-up samples (659 CeAD cases and 2,648 controls; P = 3.91 × 10(-3); combined P = 1.00 × 10(-11)). The rs9349379[G] allele was previously shown to be associated with lower risk of migraine and increased risk of myocardial infarction. Deciphering the mechanisms underlying this pleiotropy might provide important information on the biological underpinnings of these disabling conditions

    A single nuclear transcriptomic characterisation of mechanisms responsible for impaired angiogenesis and blood-brain barrier function in Alzheimer's disease

    Get PDF
    Brain perfusion and blood-brain barrier (BBB) integrity are reduced early in Alzheimer's disease (AD). We performed single nucleus RNA sequencing of vascular cells isolated from AD and non-diseased control brains to characterise pathological transcriptional signatures responsible for this. We show that endothelial cells (EC) are enriched for expression of genes associated with susceptibility to AD. Increased ÎČ-amyloid is associated with BBB impairment and a dysfunctional angiogenic response related to a failure of increased pro-angiogenic HIF1A to increased VEGFA signalling to EC. This is associated with vascular inflammatory activation, EC senescence and apoptosis. Our genomic dissection of vascular cell risk gene enrichment provides evidence for a role of EC pathology in AD and suggests that reducing vascular inflammatory activation and restoring effective angiogenesis could reduce vascular dysfunction contributing to the genesis or progression of early AD.</p
    • 

    corecore