1,448 research outputs found
Astrometric Positions and Proper Motions of 19 Radio Stars
We have used the Very Large Array, linked with the Pie Town Very Long
Baseline Array antenna, to determine astrometric positions of 19 radio stars in
the International Celestial Reference Frame (ICRF). The positions of these
stars were directly linked to the positions of distant quasars through phase
referencing observations. The positions of the ICRF quasars are known to 0.25
mas, thus providing an absolute reference at the angular resolution of our
radio observations. Average values for the errors in our derived positions for
all sources were 13 mas and 16 mas in R.A. and declination respectively, with
accuracies approaching 1-2 mas for some of the stars observed. Differences
between the ICRF positions of the 38 quasars, and those measured from our
observations showed no systematic offsets, with mean values of -0.3 mas in R.A.
and -1.0 mas in declination. Standard deviations of the quasar position
differences of 17 mas and 11 mas in R.A. and declination respectively, are
consistent with the mean position errors determined for the stars. Our measured
positions were combined with previous Very Large Array measurements taken from
1978-1995 to determine the proper motions of 15 of the stars in our list. With
mean errors of approximately 1.6 mas/yr, the accuracies of our proper motions
approach those derived from Hipparcos, and for a few of the stars in our
program, are better than the Hipparcos values. Comparing the positions of our
radio stars with the Hipparcos catalog, we find that at the epoch of our
observations, the two frames are aligned to within formal errors of
approximately 3 mas. This result confirms that the Hipparcos frame is inertial
at the expected level.Comment: 20 pages, 9 figures Accepted by the Astronomical Journal, 2003 March
1
Time-evolution of the Rule 150 cellular automaton activity from a Fibonacci iteration
The total activity of the single-seeded cellular rule 150 automaton does not
follow a one-step iteration like other elementary cellular automata, but can be
solved as a two-step vectorial, or string, iteration, which can be viewed as a
generalization of Fibonacci iteration generating the time series from a
sequence of vectors of increasing length. This allows to compute the total
activity time series more efficiently than by simulating the whole
spatio-temporal process, or even by using the closed expression.Comment: 4 pages (3 figs included
SiS in the circumstellar envelope of IRC +10126: maser and quasi-thermal emission
We present new Effelsberg-100 m, ATCA, and VLA observations of rotational SiS
transitions in the circumstellar envelope (CSE) of IRC +10216. Thanks to the
high angular resolution achieved by the ATCA observations, we unambiguously
confirm that the molecule's J=1-0 transition exhibits maser action in this CSE,
as first suggested more than thirty years ago. The maser emission's radial
velocity peaking at a local standard of rest velocity of -39.8620.065 km/s
indicates that it arises from an almost fully accelerated shell. Monitoring
observations show time variability of the SiS (1-0) maser. The two lowest-
SiS quasi-thermal emission lines trace a much more extended emitting region
than previous high-J SiS observations. Their distributions show that the SiS
quasi-thermal emission consists of two components: one is very compact
(radius<1.5", corresponding to <3 cm), and the other extends
out to a radius >11". An incomplete shell-like structure is found in the
north-east, which is indicative of existing SiS shells. Clumpy structures are
also revealed in this CSE. The gain of the SiS (1-0) maser (optical depths of
about -5 at the blue-shifted side and, assuming inversion throughout the entire
line's velocity range, about -2 at the red-shifted side) suggests that it is
unsaturated. The SiS (1-0) maser can be explained in terms of ro-vibrational
excitation caused by infrared pumping, and we propose that infrared continuum
emission is the main pumping source.Comment: Accepted for publication in ApJ. A high-resolution version can be
found at https://gongyan2444.github.io/pdf/cw-leo-sis.pdf 3D movies of SiS
cubes can be found at https://gongyan2444.github.io/movie/sis10-3d.avi and
https://gongyan2444.github.io/movie/sis21-3d.av
Weak and Compact Radio Emission in Early High-Mass Star Forming Regions: I. VLA Observations
We present a high sensitivity radio continuum survey at 6 and 1.3cm using
the Karl G. Jansky Very Large Array towards a sample of 58 high-mass star
forming regions. Our sample was chosen from dust clumps within infrared dark
clouds with and without IR sources (CMC-IRs, CMCs, respectively), and hot
molecular cores (HMCs), with no previous, or relatively weak radio continuum
detection at the mJy level. Due to the improvement in the continuum
sensitivity of the VLA, this survey achieved map rms levels of 3-10
Jy beam at sub-arcsecond angular resolution. We extracted 70
centimeter continuum sources associated with 1.2mm dust clumps. Most
sources are weak, compact, and are prime candidates for high-mass protostars.
Detection rates of radio sources associated with the mm dust clumps for CMCs,
CMC-IRs and HMCs are 6, 53 and 100, respectively. This result is
consistent with increasing high-mass star formation activity from CMCs to HMCs.
The radio sources located within HMCs and CMC-IRs occur close to the dust clump
centers with a median offset from it of 12,000AU and 4,000AU,
respectively. We calculated 5 - 25GHz spectral indices using power law fits
and obtain a median value of 0.5 (i.e., flux increasing with frequency),
suggestive of thermal emission from ionized jets. In this paper we describe the
sample, observations, and detections. The analysis and discussion will be
presented in Paper II.Comment: Accepted for publication in the ApJ
Analysis of the loop length distribution for the negative weight percolation problem in dimensions d=2 through 6
We consider the negative weight percolation (NWP) problem on hypercubic
lattice graphs with fully periodic boundary conditions in all relevant
dimensions from d=2 to the upper critical dimension d=6. The problem exhibits
edge weights drawn from disorder distributions that allow for weights of either
sign. We are interested in in the full ensemble of loops with negative weight,
i.e. non-trivial (system spanning) loops as well as topologically trivial
("small") loops. The NWP phenomenon refers to the disorder driven proliferation
of system spanning loops of total negative weight. While previous studies where
focused on the latter loops, we here put under scrutiny the ensemble of small
loops. Our aim is to characterize -using this extensive and exhaustive
numerical study- the loop length distribution of the small loops right at and
below the critical point of the hypercubic setups by means of two independent
critical exponents. These can further be related to the results of previous
finite-size scaling analyses carried out for the system spanning loops. For the
numerical simulations we employed a mapping of the NWP model to a combinatorial
optimization problem that can be solved exactly by using sophisticated matching
algorithms. This allowed us to study here numerically exact very large systems
with high statistics.Comment: 7 pages, 4 figures, 2 tables, paper summary available at
http://www.papercore.org/Kajantie2000. arXiv admin note: substantial text
overlap with arXiv:1003.1591, arXiv:1005.5637, arXiv:1107.174
Large Fluctuations and Fixation in Evolutionary Games
We study large fluctuations in evolutionary games belonging to the
coordination and anti-coordination classes. The dynamics of these games,
modeling cooperation dilemmas, is characterized by a coexistence fixed point
separating two absorbing states. We are particularly interested in the problem
of fixation that refers to the possibility that a few mutants take over the
entire population. Here, the fixation phenomenon is induced by large
fluctuations and is investigated by a semi-classical WKB
(Wentzel-Kramers-Brillouin) theory generalized to treat stochastic systems
possessing multiple absorbing states. Importantly, this method allows us to
analyze the combined influence of selection and random fluctuations on the
evolutionary dynamics \textit{beyond} the weak selection limit often considered
in previous works. We accurately compute, including pre-exponential factors,
the probability distribution function in the long-lived coexistence state and
the mean fixation time necessary for a few mutants to take over the entire
population in anti-coordination games, and also the fixation probability in the
coordination class. Our analytical results compare excellently with extensive
numerical simulations. Furthermore, we demonstrate that our treatment is
superior to the Fokker-Planck approximation when the selection intensity is
finite.Comment: 17 pages, 10 figures, to appear in JSTA
High resolution radio observations of the colliding-wind binary WR140
Milli-arcsecond resolution Very Long Baseline Array (VLBA) observations of
the archetype WR+O star colliding-wind binary (CWB) system WR140 are presented
for 23 epochs between orbital phases 0.74 and 0.97. At 8.4 GHz, the emission in
the wind-collision region (WCR) is clearly resolved as a bow-shaped arc that
rotates as the orbit progresses. We interpret this rotation as due to the O
star moving from SE to approximately E of the WR star, which leads to solutions
for the orbit inclination of 122+/-5 deg, the longitude of the ascending node
of 353+/-3 deg, and an orbit semi-major axis of 9.0+/-0.5 mas. The distance to
WR140 is determined to be 1.85+/-0.16 kpc, which requires the O star to be a
supergiant. The inclination implies the mass of the WR and O star to be 20+/-4
and 54+/-10 solar masses respectively. We determine a wind-momentum ratio of
0.22, with an expected half-opening angle for the WCR of 63 deg, consistent
with 65+/-10 deg derived from the VLBA observations. Total flux measurements
from Very Large Array (VLA) observations show the radio emission from WR140 is
very closely the same from one orbit to the next, pointing strongly toward
emission, absorption and cooling mechanism(s) that are controlled largely by
the orbital motion. The synchrotron spectra evolve dramatically through the
orbital phases observed, exhibiting both optically thin and optically thick
emission. We discuss a number of absorption and cooling mechanisms that may
determine the evolution of the synchrotron spectrum with orbital phase.Comment: Accepted by ApJ, to appear in v623, April 20, 2005. 14 pages, 13
figs, requires emulateapj.cls. A version with full resolution figs can be
obtained from http://www.drao.nrc.ca/~smd/preprint/wr140_data.pd
The origin of human chromosome 2 analyzed by comparative chromosome mapping with a DNA microlibrary
Fluorescencein situ hybridization (FISH) of microlibraries established from distinct chromosome subregions can test the evolutionary conservation of chromosome bands as well as chromosomal rearrangements that occurred during primate evolution and will help to clarify phylogenetic relationships. We used a DNA library established by microdissection and microcloning from the entire long arm of human chromosome 2 for fluorescencein situ hybridization and comparative mapping of the chromosomes of human, great apes (Pan troglodytes, Pan paniscus, Gorilla gorilla, Pongo pygmaeus) and Old World monkeys (Macaca fuscata andCercopithecus aethiops). Inversions were found in the pericentric region of the primate chromosome 2p homologs in great apes, and the hybridization pattern demonstrates the known phylogenetically derived telomere fusion in the line that leads to human chromosome 2. The hybridization of the 2q microlibrary to chromosomes of Old World monkeys gave a different pattern from that in the gorilla and the orang-utan, but a pattern similar to that of chimpanzees. This suggests convergence of chromosomal rearrangements in different phylogenetic lines
BEC Collapse and Dynamical Squeezing of Vacuum Fluctuations
We analyze the phenomena of Bose Novae, as described by Donley et al [Nature
412, 295 (2001)], by focusing on the behavior of excitations or fluctuations
above the condensate, as driven by the dynamics of the condensate (rather than
the dynamics of the condensate alone or the kinetics of the atoms). The
dynamics of the condensate squeezes and amplifies the quantum excitations,
mixing the positive and negative frequency components of their wave functions
thereby creating particles which appear as bursts and jets. By analyzing the
changing amplitude and particle content of these excitations, our simple
physical picture (based on a test field approximation) explains well the
overall features of the Bose Novae phenomena and provide excellent quantitative
fits with experimental data on several aspects, such as the scaling behavior of
the collapse time and the amount of particles in the jet. The predictions of
the bursts at this level of approximation is less than satisfactory but may be
improved on by including the backreaction of the excitations on the condensate.
The mechanism behind the dominant effect -- parametric amplification of vacuum
fluctuations and freezing of modes outside of horizon -- is similar to that of
cosmological particle creation and structure formation in a rapid quench (which
is fundamentally different from Hawking radiation in black holes). This shows
that BEC dynamics is a promising venue for doing `laboratory cosmology'.Comment: Latex 36 pages, 6 figure
- …
