1,448 research outputs found

    Astrometric Positions and Proper Motions of 19 Radio Stars

    Full text link
    We have used the Very Large Array, linked with the Pie Town Very Long Baseline Array antenna, to determine astrometric positions of 19 radio stars in the International Celestial Reference Frame (ICRF). The positions of these stars were directly linked to the positions of distant quasars through phase referencing observations. The positions of the ICRF quasars are known to 0.25 mas, thus providing an absolute reference at the angular resolution of our radio observations. Average values for the errors in our derived positions for all sources were 13 mas and 16 mas in R.A. and declination respectively, with accuracies approaching 1-2 mas for some of the stars observed. Differences between the ICRF positions of the 38 quasars, and those measured from our observations showed no systematic offsets, with mean values of -0.3 mas in R.A. and -1.0 mas in declination. Standard deviations of the quasar position differences of 17 mas and 11 mas in R.A. and declination respectively, are consistent with the mean position errors determined for the stars. Our measured positions were combined with previous Very Large Array measurements taken from 1978-1995 to determine the proper motions of 15 of the stars in our list. With mean errors of approximately 1.6 mas/yr, the accuracies of our proper motions approach those derived from Hipparcos, and for a few of the stars in our program, are better than the Hipparcos values. Comparing the positions of our radio stars with the Hipparcos catalog, we find that at the epoch of our observations, the two frames are aligned to within formal errors of approximately 3 mas. This result confirms that the Hipparcos frame is inertial at the expected level.Comment: 20 pages, 9 figures Accepted by the Astronomical Journal, 2003 March 1

    Time-evolution of the Rule 150 cellular automaton activity from a Fibonacci iteration

    Get PDF
    The total activity of the single-seeded cellular rule 150 automaton does not follow a one-step iteration like other elementary cellular automata, but can be solved as a two-step vectorial, or string, iteration, which can be viewed as a generalization of Fibonacci iteration generating the time series from a sequence of vectors of increasing length. This allows to compute the total activity time series more efficiently than by simulating the whole spatio-temporal process, or even by using the closed expression.Comment: 4 pages (3 figs included

    SiS in the circumstellar envelope of IRC +10126: maser and quasi-thermal emission

    Full text link
    We present new Effelsberg-100 m, ATCA, and VLA observations of rotational SiS transitions in the circumstellar envelope (CSE) of IRC +10216. Thanks to the high angular resolution achieved by the ATCA observations, we unambiguously confirm that the molecule's J=1-0 transition exhibits maser action in this CSE, as first suggested more than thirty years ago. The maser emission's radial velocity peaking at a local standard of rest velocity of -39.862±\pm0.065 km/s indicates that it arises from an almost fully accelerated shell. Monitoring observations show time variability of the SiS (1-0) maser. The two lowest-JJ SiS quasi-thermal emission lines trace a much more extended emitting region than previous high-J SiS observations. Their distributions show that the SiS quasi-thermal emission consists of two components: one is very compact (radius<1.5", corresponding to <3×1015\times 10^{15} cm), and the other extends out to a radius >11". An incomplete shell-like structure is found in the north-east, which is indicative of existing SiS shells. Clumpy structures are also revealed in this CSE. The gain of the SiS (1-0) maser (optical depths of about -5 at the blue-shifted side and, assuming inversion throughout the entire line's velocity range, about -2 at the red-shifted side) suggests that it is unsaturated. The SiS (1-0) maser can be explained in terms of ro-vibrational excitation caused by infrared pumping, and we propose that infrared continuum emission is the main pumping source.Comment: Accepted for publication in ApJ. A high-resolution version can be found at https://gongyan2444.github.io/pdf/cw-leo-sis.pdf 3D movies of SiS cubes can be found at https://gongyan2444.github.io/movie/sis10-3d.avi and https://gongyan2444.github.io/movie/sis21-3d.av

    Weak and Compact Radio Emission in Early High-Mass Star Forming Regions: I. VLA Observations

    Get PDF
    We present a high sensitivity radio continuum survey at 6 and 1.3\,cm using the Karl G. Jansky Very Large Array towards a sample of 58 high-mass star forming regions. Our sample was chosen from dust clumps within infrared dark clouds with and without IR sources (CMC-IRs, CMCs, respectively), and hot molecular cores (HMCs), with no previous, or relatively weak radio continuum detection at the 11\,mJy level. Due to the improvement in the continuum sensitivity of the VLA, this survey achieved map rms levels of \sim 3-10 μ\muJy beam1^{-1} at sub-arcsecond angular resolution. We extracted 70 centimeter continuum sources associated with 1.2\,mm dust clumps. Most sources are weak, compact, and are prime candidates for high-mass protostars. Detection rates of radio sources associated with the mm dust clumps for CMCs, CMC-IRs and HMCs are 6%\%, 53%\% and 100%\%, respectively. This result is consistent with increasing high-mass star formation activity from CMCs to HMCs. The radio sources located within HMCs and CMC-IRs occur close to the dust clump centers with a median offset from it of 12,000\,AU and 4,000\,AU, respectively. We calculated 5 - 25\,GHz spectral indices using power law fits and obtain a median value of 0.5 (i.e., flux increasing with frequency), suggestive of thermal emission from ionized jets. In this paper we describe the sample, observations, and detections. The analysis and discussion will be presented in Paper II.Comment: Accepted for publication in the ApJ

    Analysis of the loop length distribution for the negative weight percolation problem in dimensions d=2 through 6

    Full text link
    We consider the negative weight percolation (NWP) problem on hypercubic lattice graphs with fully periodic boundary conditions in all relevant dimensions from d=2 to the upper critical dimension d=6. The problem exhibits edge weights drawn from disorder distributions that allow for weights of either sign. We are interested in in the full ensemble of loops with negative weight, i.e. non-trivial (system spanning) loops as well as topologically trivial ("small") loops. The NWP phenomenon refers to the disorder driven proliferation of system spanning loops of total negative weight. While previous studies where focused on the latter loops, we here put under scrutiny the ensemble of small loops. Our aim is to characterize -using this extensive and exhaustive numerical study- the loop length distribution of the small loops right at and below the critical point of the hypercubic setups by means of two independent critical exponents. These can further be related to the results of previous finite-size scaling analyses carried out for the system spanning loops. For the numerical simulations we employed a mapping of the NWP model to a combinatorial optimization problem that can be solved exactly by using sophisticated matching algorithms. This allowed us to study here numerically exact very large systems with high statistics.Comment: 7 pages, 4 figures, 2 tables, paper summary available at http://www.papercore.org/Kajantie2000. arXiv admin note: substantial text overlap with arXiv:1003.1591, arXiv:1005.5637, arXiv:1107.174

    Large Fluctuations and Fixation in Evolutionary Games

    Get PDF
    We study large fluctuations in evolutionary games belonging to the coordination and anti-coordination classes. The dynamics of these games, modeling cooperation dilemmas, is characterized by a coexistence fixed point separating two absorbing states. We are particularly interested in the problem of fixation that refers to the possibility that a few mutants take over the entire population. Here, the fixation phenomenon is induced by large fluctuations and is investigated by a semi-classical WKB (Wentzel-Kramers-Brillouin) theory generalized to treat stochastic systems possessing multiple absorbing states. Importantly, this method allows us to analyze the combined influence of selection and random fluctuations on the evolutionary dynamics \textit{beyond} the weak selection limit often considered in previous works. We accurately compute, including pre-exponential factors, the probability distribution function in the long-lived coexistence state and the mean fixation time necessary for a few mutants to take over the entire population in anti-coordination games, and also the fixation probability in the coordination class. Our analytical results compare excellently with extensive numerical simulations. Furthermore, we demonstrate that our treatment is superior to the Fokker-Planck approximation when the selection intensity is finite.Comment: 17 pages, 10 figures, to appear in JSTA

    High resolution radio observations of the colliding-wind binary WR140

    Get PDF
    Milli-arcsecond resolution Very Long Baseline Array (VLBA) observations of the archetype WR+O star colliding-wind binary (CWB) system WR140 are presented for 23 epochs between orbital phases 0.74 and 0.97. At 8.4 GHz, the emission in the wind-collision region (WCR) is clearly resolved as a bow-shaped arc that rotates as the orbit progresses. We interpret this rotation as due to the O star moving from SE to approximately E of the WR star, which leads to solutions for the orbit inclination of 122+/-5 deg, the longitude of the ascending node of 353+/-3 deg, and an orbit semi-major axis of 9.0+/-0.5 mas. The distance to WR140 is determined to be 1.85+/-0.16 kpc, which requires the O star to be a supergiant. The inclination implies the mass of the WR and O star to be 20+/-4 and 54+/-10 solar masses respectively. We determine a wind-momentum ratio of 0.22, with an expected half-opening angle for the WCR of 63 deg, consistent with 65+/-10 deg derived from the VLBA observations. Total flux measurements from Very Large Array (VLA) observations show the radio emission from WR140 is very closely the same from one orbit to the next, pointing strongly toward emission, absorption and cooling mechanism(s) that are controlled largely by the orbital motion. The synchrotron spectra evolve dramatically through the orbital phases observed, exhibiting both optically thin and optically thick emission. We discuss a number of absorption and cooling mechanisms that may determine the evolution of the synchrotron spectrum with orbital phase.Comment: Accepted by ApJ, to appear in v623, April 20, 2005. 14 pages, 13 figs, requires emulateapj.cls. A version with full resolution figs can be obtained from http://www.drao.nrc.ca/~smd/preprint/wr140_data.pd

    The origin of human chromosome 2 analyzed by comparative chromosome mapping with a DNA microlibrary

    Get PDF
    Fluorescencein situ hybridization (FISH) of microlibraries established from distinct chromosome subregions can test the evolutionary conservation of chromosome bands as well as chromosomal rearrangements that occurred during primate evolution and will help to clarify phylogenetic relationships. We used a DNA library established by microdissection and microcloning from the entire long arm of human chromosome 2 for fluorescencein situ hybridization and comparative mapping of the chromosomes of human, great apes (Pan troglodytes, Pan paniscus, Gorilla gorilla, Pongo pygmaeus) and Old World monkeys (Macaca fuscata andCercopithecus aethiops). Inversions were found in the pericentric region of the primate chromosome 2p homologs in great apes, and the hybridization pattern demonstrates the known phylogenetically derived telomere fusion in the line that leads to human chromosome 2. The hybridization of the 2q microlibrary to chromosomes of Old World monkeys gave a different pattern from that in the gorilla and the orang-utan, but a pattern similar to that of chimpanzees. This suggests convergence of chromosomal rearrangements in different phylogenetic lines

    BEC Collapse and Dynamical Squeezing of Vacuum Fluctuations

    Get PDF
    We analyze the phenomena of Bose Novae, as described by Donley et al [Nature 412, 295 (2001)], by focusing on the behavior of excitations or fluctuations above the condensate, as driven by the dynamics of the condensate (rather than the dynamics of the condensate alone or the kinetics of the atoms). The dynamics of the condensate squeezes and amplifies the quantum excitations, mixing the positive and negative frequency components of their wave functions thereby creating particles which appear as bursts and jets. By analyzing the changing amplitude and particle content of these excitations, our simple physical picture (based on a test field approximation) explains well the overall features of the Bose Novae phenomena and provide excellent quantitative fits with experimental data on several aspects, such as the scaling behavior of the collapse time and the amount of particles in the jet. The predictions of the bursts at this level of approximation is less than satisfactory but may be improved on by including the backreaction of the excitations on the condensate. The mechanism behind the dominant effect -- parametric amplification of vacuum fluctuations and freezing of modes outside of horizon -- is similar to that of cosmological particle creation and structure formation in a rapid quench (which is fundamentally different from Hawking radiation in black holes). This shows that BEC dynamics is a promising venue for doing `laboratory cosmology'.Comment: Latex 36 pages, 6 figure
    corecore